
CpSc 418 Homework 4 Due: Nov. 14, 2018, 11:59pm
Early Bird: Nov. 13, 2018, 11:59pm

63 points.

Please submit your solution using the handin program. Submit your solution as
cs418 hw4

Your submission should consist of two files:

• hw4.erl: Erlang source code for the coding parts your solution.

• hw4.pdf PDF for the written response parts of your solution and the plots.

A templates for hw4.erl is available at
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/4/src/hw4.erl.

Please submit code that compiles without errors or warnings. If your code does not compile, we might give
you zero points on all of the programming problems. If we fix your code to make it compile, we will take off
lots of points for that service. If your code generates compiler warnings, we will take off points for that as
well, but not as many as for code that doesn’t compile successfully.

We will take off points for code that prints results unless we specifically asked for print-out. For this
assignment, the functions you write should return the specified values, but they should not print anything to
stdout. Using io:format when debugging is great, but you need to delete or comment-out such calls before
submitting your solution. Printing an error message to stdout when your function is called with invalid
arguments is acceptable but not required. Your code must fail with some kind of error when called with
invalid arguments.

merge−8

out[0]

out[1]

out[2]

out[3]

in[0]

in[3]

in[2]

in[1]

in[4]

in[7]

in[6]

in[5]

out[4]

out[5]

out[6]

out[7]

in[0]

in[3]

in[2]

in[1]

out[0]

out[1]

out[2]

out[3]

merge−4

Figure 1: Bitonic Merge

1. Bitonic Merge (28 points)
Figure 1 shows sorting networks for a 4-way and an 8-way bitonic merge. The TAs and I have been
asked “What if the input to a merge network is not bitonic?”. Good question. Let’s find out.

(a) Messing up a 4-way merge (5 points)
Show that if the input to a 4-way, bitonic sorting network is not bitonic, then the output is not
sorted. Give a short proof in your hw4.pdf.
Hint: How many non-bitonic sequences of four 0s and 1s are there?

1

http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/4/src/hw4.erl
http://www.ugrad.cs.ubc.ca/~cs418/2018-1/hw/4/src/hw4.erl
http://erlang.org/doc/man/io.html#format-2


(b) Recognizing sorted lists (5 points)
Write a function, is_sorted(List), that returns true if List is a list whose elements are in
non-decreasing order. Note that is_sorted([]) and

is_sorted(SingletonList) when length(SingletonList) == 1 should both return true.
(c) Recognizing bitonic lists (5 points)

Write a function, is_bitonic(List), that returns true if List is a bitonic list (up-down or
down-up). Note that any list of three or fewer elements is bitonic.

(d) Lucking out with an 8-way merge (5 points)
Show that there is at least one non-bitonic inputs to an 8-way bitonic merge that produces a
sorted output. You may do this with a written argument in your hw4.pdf, or you can do it by
writing code in your hw4.erl. If you do the coding approach, write a short explanation of what
you did in your hw4.pdf. Note: you’ll need to do write code for the next part of this question no
matter what you do here.

(e) More on the 8-way merge (8 points)
How many non-bitonic sequences of eight 0s and 1s are there? How many of them when input to
an 8-way bitonic network produce a sorted output? Solve this problem by writing code in your
hw4.erl. Write a brief explanation of how your code works. Hint: it should try all sequences
of eight 0s and 1s and check the result of bitonic_merge on those that are not bitonic. The
functions hw4:find_combination/3 and hw4:map_combination/3 should make it easier to write
your solution.

2. Bitonic Sort (35 points)
hw4:bitonic_sort(List) is an implementation of bitonic sort for lists whose lengths are powers of
two. Try it on a random list of N elements where N is a power of 2 (e.g. use misc:rlist) – it really works!
The function

hw4:bitonic_sort(List, N, Dir)
Divides List into segments of length N and sorts each in direction Dir. If Dir > 0, then the list is
sorted into ascending order. If Dir < 0, then the list is sorted into descending order.
We want to find out if any of the compare-and-swap operations are unnecessary. The idea is to count
how many compare-and-swap operations the algorithm has performed as it goes along. We’ll introduce
a variable, CAS_count for counting compare and swap operations. Then, we’ll add a parameter Target
so that the Targetth compare-and-swap is disabled – i.e. it just copies its inputs to its outputs and
never swaps them. Then, we can test the sorting network with each compare-and-swap disabled (one
at a time) to find out if any are unneeded.

(a) Counting compare-and-swap operations. (10 points)
Howmany compare-and-swap operations are performed when executing hw4:bitonic_sort(List)?
OK, we know the answer is supposed to be

N

2

(
log2 N + 1

2

)
but let’s write some code to make sure.
I’ve provided bitonic_sort(List, N, Dir, CAS_count, Target). The parameter CAS_count
is the total number of compare-and-swaps performed so far. The parameter Target gets passed
to bitonic_merge/5 which you will write, and you can pass it to bitonic_step/5 if you like,
but we won’t use it any further until the next part of this question.
Your task for this question is to write bitonic_merge/5 and bitonic_step/5 to keep track of
the total number of compare-and-swap operations that have been performed so far. When you
are done,

2

https://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/misc.html#rlist-2


bitonic_sort(List, length(List), +1, 0, 0)
should return a tuple of the form {SortedList, CAS_count} where SortedList is the sorted
version of List, and CAS_count is the total number of compare and swap operations that were
performed.
Nov. 11, 2018: To make it easier to run simple tests, I’ve added a function bsort(List) to the
hw4.erl template that just calls

bitonic_sort(List, length(List), +1, 0, 0).

(b) Using the target. (5 points)
The functions bitonic_sort/5, bitonic_merge/5, and bitonic_step/5 all have a parameter
called Target. Modify bitonic_step/5 so that the compare-and-swap is skipped (i.e. the input
is copied directly to the output and never swapped) when performing the compare-and-swap
operation that sets the total number done so far (i.e. CAS_count) to Target.

(c) Finding a bad input. (10 points).
Complete the function, find_bad_input(N, Target). If bitonic_sort sorts some input in-
correctly when the Targetth compare-and-swap is skipped, this function returns such an input.
Otherwise, it returns none. Hint: the function find_combination/3 is useful when solving this
problem.

(d) Are all compare-and-swap operations needed? (10 points)
Complete the function, useless_cas that returns a list of all unnecesasry compare-and-swap
operations. Are there any unnecessary compare-and-swap operations for a bitonic sorting network
with 16 inputs?
Note: my solution takes about 20 seconds to run.

Unless otherwise noted or cited, the questions and other material in this homework problem set is
copyright 2018 by Mark Greenstreet and are made available under the terms of the Creative Commons
Attribution 4.0 International license http://creativecommons.org/licenses/by/4.0/

3

http://creativecommons.org/licenses/by/4.0/

