
CpSc 418 Midterm October 22, 2018

Graded out of 62 points

Time for the exam: 50 minutes.

Open book: anything printed on paper may be brought to the
exam and used during the exam. This includes the text-
book, other books, printed copies of the lecture slides, lec-
ture notes, homework and solutions, and any other material
that a student chooses to bring.

Calculators are allowed: no restriction on programmability
or graphing. There are a few simple calculations needed in
the exam, a calculator will be handy, but the fancy features
will not make a difference.

No communication devices: That’s right. You may not use
your cell phone for voice, text, web-surfing, as a calcula-
tor, or any other purpose. Likewise, the use of computers,
tablets, etc. is not permitted during the exam.

Q Pts
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Total

No Test books: We have included space with each question for you to write your answers. There are a few blank
pages at the end that you can use if you need more space. Note that the space that we provide is intended to be
generous.

Bug bounties are in effect and given in midterm points. Only report a suspected error if it affects your ability to
complete the exam. To report an error, raise your hand. Due to Mark’s hearing difficulties, he may need to step
out in the hall to hear you – he doesn’t understand whispers. We will post any corrections to the whiteboard.

Minor spelling, grammar, and similar errors should be posted to piazza after the exam. If the “error” does not
impact your understanding of what question is being asked of how to solve it, then it is a minor error.

Good luck!



CpSc 418 Midterm October 22, 2018

Answer all of the questions: question 0 and all five of questions 1 – 5.
Graded out of 62 points.

0. Who are you? (2 points)

(a) Your name:

(b) Your student number:

1. Speed-Up (15 points)
This problem examines the speed-up of a typical reduce problem. The input consists of N data values. The
sequential version takes T1 operations per data value. The data is available to the sequential processes at the
start of execution.

The parallel version uses P worker processes. Each worker process has its part of the data stored locally at the
start of the execution. Each worker process combines N/P values. Then, these results are combined using the
binary-tree approach that we have used all term. Sending a message between processors takes the same amount
of time as λ operations – this is the time from the send to completing the receive. For all of the questions below:

• N = 131, 072 = 217.

• P = 16 = 24.

• λ = 16, 384 = 214.

• Tseq is the time to execute the sequential program.

• Tpar is the time to execute the parallel program with P processors.

We will consider two values for T1: 32 and 8. Each question specifies which value of T1 it uses.

(a) (3 points) Let T1 = 32. What is Tseq?

(b) (3 points) Let T1 = 32. What is Tpar?

(c) (2 points) Let T1 = 32. What is the speed-up?



(d) (4 points) With a better compiler, we get T1 = 8. What is the speed-up when T1 = 8?

(e) (1 point) Of the four versions, sequential and parallel with T1 = 8 or T1 = 32, which one is the fastest
(i.e. executes in the least time)?

(f) (2 points) Which parallel version (T1 = 8 or T1 = 32) has the greater speed-up? Give a one or two
sentence explanation for the trend you observe between T1 and speed-up.



2. Message-Passing Architectures (14 points)
Consider multiplying two N ×N matrices, X and Y , to produce a matrix Z. We can compute Z by computing
each element separately: Element Z(I, J) is the dot-product of row I of matrix X with column J of matrix Y .
This algorithm performs N3 “operations” where an operation consists of a multiplication and an addition. For
all questions about “time” in this problem, we consider the time for one multiply-and-add to be one time unit.
For example, a sequential implementation takes N3 time units.

We want to compute a parallel version using P message-passing processors. The P processors are arranged as
a
√
P ×

√
P mesh. Each link in the mesh consists of two, directed edges. Each edge can convey one matrix

element per time unit. All edges can convey data in parallel. Furthermore, the network supports broadcast and
multicast messages. If processor p0 sends the same message to processors p1, p2, and p3, the network can route
that one message across links that are common to the paths for these three destinations – it doesn’t send the
same message three times.

We first consider an algorithm where each processor stores N/P rows of X and Y in its local memory. Each
processor will compute N/P rows of Z. To do so, each processor sends all of its rows of Y to all of the other
processors. Likewise, each processor receives all of the other rows of Y from the other processors. As described
above, this is done with broadcast messages. After receiving Y , each processor performs N3/P operations as
described above and thus requires N3/P time for computation. In the rest of this problem, we consider the time
for communication.

(a) (1 point) What is the bisection width of the
√
P ×

√
P mesh?

Note: this mesh has a total of
√
P ∗
√
P = P nodes.

(b) (3 points) How much time is required to transmit the elements of matrix Y to all processors using this
mesh? For this problem, only consider the cross-section bandwidth. Because the network supports broad-
cast, we only need to consider how much data crosses the bisection (i.e. how many matrix elements) even
though this data is delivered to many processors on each side of the bisection.

(c) (3 points) Assume that each processor can transfer at most one element to and/or from the network per
time unit. This is a constraint on the processor-to-network bandwidth. How long does it take to deliver the
elements of Y to each processor?

(d) (2 points) Which constraint, cross-section bandwidth or processor-to-network bandwidth determines the
communication time?



(e) (4 points) What is the value for P such that the communication time is equal to the computation time?

(f) (1 point) If P is greater than the answer to Question 2e, which will be greater, the computation time or the
communication time?



3. Dependencies (5 points)

(a) (1 points) What is a read-after-write (RAW) dependency?

(b) (2 points) Dependencies can lower performance by preventing parallel execution of tasks. Consider read-
after-write (RAW), write-after-write (WAW), write-after-read (WAR), and control (CTRL) dependencies.
Renaming removes or reduces the impact of which of these types of dependencies?

(c) (2 points) Branch-prediction removes or reduces the impact of which of these types of dependencies?



4. The Work-Span Model (18 points)

(a) (4 points) Consider the following code (in C) for computing the sum of the elements in a vector:

// vec add0(v, n) – compute the sum of the elements of v.
// n is the number of elements of v.
void vec add0(double *v, int n) {

int i;
double sum = 0.0;
for(i = 0; i < n; i++)

sum += v[i];
return(sum);

}

Draw a work-span graph for this computation when n==4 by labeling the vertices, and drawing arrows.
All edges should go from a earlier row down to a later row, and each operation should be put in the earliest
row allowed by the dependencies. For your convenience, I’ve provided labels you can use for the vertices.
The template has more rows and columns of “vertex boxes” than needed for a correct solution. Only draw
edges for RAW dependencies.

label operation

v[1]

v[0]

v[3]

v[2]

sum.1
inc.1

sum.0
inc.0

sum.3
inc.3

sum.2
inc.2

load v[i], when i=1
i++, when i=0

load v[i], when i=0
sum+=, when i=0

i++, when i=1
sum+=, when i=1

i++, when i=3

load v[i], when i=3
sum+=, when i=3

i++, when i=2

load v[i], when i=2
sum+=, when i=2

(b) (1 point) What is the work for the Work-Span graph from Question 4a?

(c) (1 point) What is the span for the Work-Span graph from Question 4a?

(d) (1 point) What is maximum speed-up for the Work-Span graph from Question 4a?



(e) (4 points)

// vec add1(v, 1) – compute the sum of the elements of v.
// Assume: n is even.
void vec add1(double *v0, int n) {

int i, n2 = n/2;
double sum0 = 0.0, sum1 = 0.0;
double *v1 = &v0[n2];
for(i = 0; i < n2; i++) {

sum0 += v0[i];
sum1 += v1[i];

}
return(sum0+sum1);

}

Draw a work-span graph for this computation when n==4 (thus n2=2) by labeling the vertices, and draw-
ing arrows. All edges should go from a earlier row down to a later row, and each operation should be put
in the earliest row allowed by the dependencies. For your convenience, I’ve provided labels you can use
for the vertices. The template has more rows and columns of “vertex boxes” than needed for a correct
solution. Only draw edges for RAW dependencies.

label operation

v0[1]

inc.1

sum0.1
sum1.1

v1[1]

v0[0]

inc.0

sum0.0
sum1.0

v1[0]
load v0[i], when i=0
load v1[i], when i=0
sum0+=, when i=0
sum1+=, when i=0
i++, when i=0
load v0[i], when i=1
load v1[i], when i=1
sum0+=, when i=1
sum1+=, when i=1
i++, when i=1

(f) (1 point) What is the work for the Work-Span graph from Question 4e?

(g) (1 point) What is the span for the Work-Span graph from Question 4e?

(h) (1 point) What is maximum speed-up for the Work-Span graph from Question 4e?



(i) (4 points) I tried running the vec add0 and vec add1 functions on my laptop with n==1000 and
1,000,000 trials (a total of 1,000,000,000 additions). Using vec add0, the total time was 1.03 seconds.
Using vec add1, the total time was 0.53 seconds. Why is vec add1 almost twice as fast as vec add0?
A short answer with two or three sentences is sufficient.



5. Three fibs (11 points)
The fib1(N) and fib2(N) functions below both compute the Nth Fibonacci number:

fib1(0) -> 0;
fib1(1) -> 1;
fib1(N) when is integer(N), N > 1 -> fib1(N-1) + fib1(N-2).

% fib2a is a helper function for fib2
fib2a(0) -> {0,1};
fib2a(N) ->
{FibN 1, FibN 2} = fib2a(N-1),
{FibN 1 + FibN 2, FibN 1}.

fib2(N) when is integer(N), N >= 0 ->
{Ans, } = fib2a(N),
Ans.

Using time it:t I got the following timing data:

N time for fib1(N) time for fib2(N) time for fib3(N)
10 5.2 µs 2.2 µs 2.0 µs
15 39.5 µs 2.2 µs 2.1 µs
20 435.7 µs 2.4 µs 2.3 µs
25 5.0 ms 2.5 µs 2.4 µs
30 53.8 ms 2.6 µs 2.5 µs
35 579.1 ms 2.7 µs 2.6 µs
40 6.6 s 2.9 µs 2.7 µs
50 timeout 3.1 µs 2.9 µs

100 timeout 4.8 µs 4.3 µs
200 timeout 9.4 µs 8.4 µs
300 timeout 14.3 µs 12.8 µs
400 timeout 18.9 µs 17.3 µs
500 timeout 25.1 µs 21.7 µs

(a) (1 point) Which is faster, fib1 or fib2?

(b) (2 points) Give a one or two sentence explanation for why one is faster than the other. Your answer should
address the big-O difference between fib1 and fib2. Which is faster, fib1 or fib2?

(c) (2 points) Is fib2a head-recursive or tail-recursive?



(d) (5 points) Write a third implementation of computing the Nth Fibonacci number, call it fib3. fib3
should call a helper function fib3a. fib3 should have the same big-O complexity as fib2, and fib3a
should be head-recursive if fib2a is tail-recursive, and vice-versa.
Hint: I included the run-times for my implementation of fib3.

fib3a( ) ->

fib3(N) ->

(e) (1 point) True, false, or poetry (any non-empty answer gets full credit): “For loops are evil.”

2 True
2 False
2 Other – please justify an answer of “Other” with a limerick or haiku.


