
Solution Set CPSC 418 Midterm October 22, 2018

Answer all of the questions: question 0 and all five of questions 1 – 5.
Graded out of 62 points.

0. Who are you? (2 points)

(a) Your name: Mark Greenstreet
(b) Your student number: 00000000

1. Speed-Up (15 points)
This problem examines the speed-up of a typical reduce problem. The input consists of N data values. The
sequential version takes T1 operations per data value. The data is available to the sequential processes at the
start of execution.

The parallel version uses P worker processes. Each worker process has its part of the data stored locally at the
start of the execution. Each worker process combines N/P values. Then, these results are combined using the
binary-tree approach that we have used all term. Sending a message between processors takes the same amount
of time as λ operations – this is the time from the send to completing the receive. For all of the questions below:

• N = 131, 072 = 217.

• P = 16 = 24.

• λ = 16, 384 = 214.

• Tseq is the time to execute the sequential program.

• Tpar is the time to execute the parallel program with P processors.

We will consider two values for T1: 32 and 8. Each question specifies which value of T1 it uses.

(a) (3 points) Let T1 = 32. What is Tseq?
Answer: N ∗ T1 = 217 ∗ 25 = 222 = 4, 194, 304

(b) (3 points) Let T1 = 32. What is Tpar?

Answer: Tpar = (N/P )T1 + λ log2 P = 327, 680.
Explanation:
• Time at leaves: (N/P ) ∗ T1 = (217/24)25 = 218 = 262, 144

• Time in reduce tree: λ log2 P = 214 ∗ 4 = 216 = 65, 536
Note: We will also accept a solution that has a “downward” pass to start the reduce and an
“upward” pass to combine the results – as implemented in the course library. In this case, the
time in the tree would be 217 time units.
• Total time: Tpar = 218 + 216 = 5 ∗ 216 = 327, 680.

If you made the “two-pass” assumption, then Tpar = 393, 216.

(c) (2 points) Let T1 = 32. What is the speed-up?

Answer: 12.8.
Explanation:

SpeedUp =
Tseq

Tpar

= 222

5∗216

= 26

5

= 12.8

If you made the two-pass assumption, then SpeedUp = 10 2
3 .



(d) (4 points) With a better compiler, we get T1 = 8. What is the speed-up when T1 = 8?

Answer: 8.
Explanation:

Tseq = 217 ∗ 23 = 220 = 1, 048, 576

Tpar = (217/24) ∗ 23 + 214 ∗ log2 16
= 216 + 216 = 217 = 131, 072

SpeedUp = Tseq/Tpar
= 220/217 = 23 = 8

If you made the two-pass assumption, then Tpar = 3 ∗ 216, and SpeedUp = 5 1
3 .

Note: the 4× performance advantage with a better compiler could be roughly the difference
between Erlang and C.

(e) (1 point) Of the four versions, sequential and parallel with T1 = 8 or T1 = 32, which one is the fastest
(i.e. executes in the least time)?
Answer: The parallel version with T1 = 8.

(f) (2 points) Which parallel version (T1 = 8 or T1 = 32) has the greater speed-up? Give a one or two
sentence explanation for the trend you observe between T1 and speed-up.

Answer: The parallel version with T1 = 32 has the larger speed-up.
Explanation: When T1 decreases, the computation is done more quickly, but the communication
overhead remains the same. Thus, for smaller T1, the overhead becomes a greater fraction of
tpar, and speed-up is reduced.

2. Message-Passing Architectures (14 points)
Consider multiplying two N ×N matrices, X and Y , to produce a matrix Z. We can compute Z by computing
each element separately: Element Z(I, J) is the dot-product of row I of matrix X with column J of matrix Y .
This algorithm performs N3 “operations” where an operation consists of a multiplication and an addition. For
all questions about “time” in this problem, we consider the time for one multiply-and-add to be one time unit.
For example, a sequential implementation takes N3 time units.

We want to compute a parallel version using P message-passing processors. The P processors are arranged as
a
√
P ×

√
P mesh. Each link in the mesh consists of two, directed edges. Each edge can convey one matrix

element per time unit. All edges can convey data in parallel. Furthermore, the network supports broadcast and
multicast messages. If processor p0 sends the same message to processors p1, p2, and p3, the network can route
that one message across links that are common to the paths for these three destinations – it doesn’t send the
same message three times.

We first consider an algorithm where each processor stores N/P rows of X and Y in its local memory. Each
processor will compute N/P rows of Z. To do so, each processor sends all of its rows of Y to all of the other
processors. Likewise, each processor receives all of the other rows of Y from the other processors. As described
above, this is done with broadcast messages. After receiving Y , each processor performs N3/P operations as
described above and thus requires N3/P time for computation. In the rest of this problem, we consider the time
for communication.

(a) (1 point) What is the bisection width of the
√
P ×

√
P mesh?

Note: this mesh has a total of
√
P ∗
√
P = P nodes.

Answer:
√
P .

(b) (3 points) How much time is required to transmit the elements of matrix Y to all processors using this
mesh? For this problem, only consider the cross-section bandwidth. Because the network supports broad-
cast, we only need to consider how much data crosses the bisection (i.e. how many matrix elements) even
though this data is delivered to many processors on each side of the bisection.

Answer: N2

2
√
P

.

Explanation:
• Y is N ×N and thus has N2 elements.



• There are N2/2 elements of Y on each side of the bisection.
• The problem statement says that one element can be transfered across each link per unit time.
• ∴ The total time to transfer Y across the bisection is N2/(2

√
P ).

(c) (3 points) Assume that each processor can transfer at most one element to and/or from the network per
time unit. This is a constraint on the processor-to-network bandwidth. How long does it take to deliver the
elements of Y to each processor?

Answer: N2(P − 1)/P .
Explanation:
• Each processor sends N2/P elements of Y . This takes time N2/P .
• Each processor receives (P − 1)N2/P elements of Y . This takes time (P − 1)N2/P .
• From the problem statement, the data transfers to and from the network can overlap. Thus,

the total time is
max(N2/P,N2(P − 1)/P ) = N2

(
1− 1

P

)
I’m assuming P ≥ 2.

(d) (2 points) Which constraint, cross-section bandwidth or processor-to-network bandwidth determines the
communication time?

Answer: processor-to-network. Explanation: for P ≥ 2, 1− 1
P > 1/(2

√
P ).

(e) (4 points) What is the value for P such that the communication time is equal to the computation time?

Answer:
P−1
P N2 = N3

P
P − 1 = N

P = N + 1

I’d expect two or three lines of derivation in an answer.

(f) (1 point) If P is greater than the answer to Question 2e, which will be greater, the computation time or the
communication time?

Answer: communication time.
Explanation: Computation time decreases as 1/P with increasing P , and communication time
increases as 1− 1/P .

3. Dependencies (5 points)

(a) (1 points) What is a read-after-write (RAW) dependency?

Answer: Assume operation x comes before operation y in program order. Operation x uses
a value produces by operation y; therefore, operation x cannot execute until after operation y
finishes.

(b) (2 points) Dependencies can lower performance by preventing parallel execution of tasks. Consider read-
after-write (RAW), write-after-write (WAW), write-after-read (WAR), and control (CTRL) dependencies.
Renaming removes or reduces the impact of which of these types of dependencies?

Answer: WAW and WAR.
Explanation: Assume operation x comes before operation y in program order. With a WAW
or WAW hazard, operation x reads or writes a register (or variable) that is written by operation
y. With renaming, a fresh register (or variable) is allocated for y’s write which avoids having y
interfere with x. The dependency is removed.



(c) (2 points) Branch-prediction removes or reduces the impact of which of these types of dependencies?

Answer: CTRL.
Explanation: Branch-prediction allows instructions that follow a branch to be fetched and exe-
cuted before the branch is resolved. If the prediction is correct, the results from these speculated
instructions can be used. If the prediction turns out to be wrong, the processor rolls-back its state
to the mispredicted branch and resumes execution along the correct path.

4. The Work-Span Model (18 points)

(a) (4 points) Consider the following code (in C) for computing the sum of the elements in a vector:

// vec add0(v, n) – compute the sum of the elements of v.
// n is the number of elements of v.
void vec add0(double *v, int n) {

int i;
double sum = 0.0;
for(i = 0; i < n; i++)

sum += v[i];
return(sum);

}

Draw a work-span graph for this computation when n==4 by labeling the vertices, and drawing arrows.
All edges should go from a earlier row down to a later row, and each operation should be put in the earliest
row allowed by the dependencies. For your convenience, I’ve provided labels you can use for the vertices.
The template has more rows and columns of “vertex boxes” than needed for a correct solution. Only draw
edges for RAW dependencies.

v[0]

inc.3 v[3] sum.2

inc.2 v[2] sum.1

label

sum.3

operation

inc.1 v[1] sum.0

inc.0

v[0]

v[3]

v[2]

sum.1
inc.1

sum.0
inc.0

sum.3
inc.3

sum.2
inc.2

load v[i], when i=1
i++, when i=0

load v[i], when i=0
sum+=, when i=0

i++, when i=1
sum+=, when i=1

i++, when i=3

load v[i], when i=3
sum+=, when i=3

i++, when i=2

load v[i], when i=2
sum+=, when i=2

v[1]

(b) (1 point) What is the work for the Work-Span graph from Question 4a?

Answer: 12.
Explanation: one unit of work for each vertex in the graph – i.e. each operation that got a label in
the template for the graph.

(c) (1 point) What is the span for the Work-Span graph from Question 4a?

Answer: 5.
The critical path goes: v[0]→ sum.0→ sum.1→ sum.2→ sum.3 It has five operations;
this, the span is five.



(d) (1 point) What is the maximum speed-up for the Work-Span graph from Question 4a?

Answer: 2.4
Explanation: T∞ = Work/Span = 12/5 = 2.4.

(e) (4 points)

// vec add1(v, 1) – compute the sum of the elements of v.
// Assume: n is even.
void vec add1(double *v0, int n) {

int i, n2 = n/2;
double sum0 = 0.0, sum1 = 0.0;
double *v1 = &v0[n2];
for(i = 0; i < n2; i++) {

sum0 += v0[i];
sum1 += v1[i];

}
return(sum0+sum1);

}

Draw a work-span graph for this computation when n==4 (thus n2=2) by labeling the vertices, and draw-
ing arrows. All edges should go from a earlier row down to a later row, and each operation should be put
in the earliest row allowed by the dependencies. For your convenience, I’ve provided labels you can use
for the vertices. The template has more rows and columns of “vertex boxes” than needed for a correct
solution. Only draw edges for RAW dependencies.

v0[0]

operation

sum1.1

v1[1] sum1.0

v1[0]

label

inc.1

inc.0

sum0.1

v0[1]sum0.0

inc.1

sum0.1
sum1.1

v1[1]

v0[0]

inc.0

sum0.0
sum1.0

v1[0]
load v0[i], when i=0
load v1[i], when i=0
sum0+=, when i=0
sum1+=, when i=0
i++, when i=0
load v0[i], when i=1
load v1[i], when i=1
sum0+=, when i=1
sum1+=, when i=1
i++, when i=1

v0[1]

(f) (1 point) What is the work for the Work-Span graph from Question 4e?
Answer: 10

(g) (1 point) What is the span for the Work-Span graph from Question 4e?
Answer: 3

(h) (1 point) What is the maximum speed-up for the Work-Span graph from Question 4e?
Answer: 3 1

3

(i) (4 points) I tried running the vec add0 and vec add1 functions on my laptop with n==1000 and
1,000,000 trials (a total of 1,000,000,000 additions). Using vec add0, the total time was 1.03 seconds.
Using vec add1, the total time was 0.53 seconds. Why is vec add1 almost twice as fast as vec add0?
A short answer with two or three sentences is sufficient.



Answer: The execution time for vec add0 is determined by the chain of dependencies for
accumulating sum. vec add1 breaks this into two, independent chains of half the length. This
roughly cuts the span in half.
Geeky superscalar details: A superscalar processor can perform the load, increment, and floating-
point add instructions in parallel. The floating point add operation takes several (probably 3
or 4) clock cycles but the floating point unit is pipelined, allowing a throughput of one add
per cycle. One might guess that putting more instructions in the loop-body for vec add1 is
reducing the loop overhead. I tried ’gcc -O3 -S vec add.c’ and looked at the assembly
code. gcc unrolls four copies of the for-loop body for vec add0 producing four floating point
adds and a total of eight instructions per iteration. gcc unrolls two copies of the for-loop body
for vec add1 producing four floating point adds and a total of nine instructions per iteration.
Thus, vec add1 is performing more instructions than vec add0, and the speed-up is due to
the greater parallelism due to the computations for sum0 and sum1 being independent.

5. Three fibs (11 points)
The fib1(N) and fib2(N) functions below both compute the Nth Fibonacci number:

fib1(0) -> 0;
fib1(1) -> 1;
fib1(N) when is integer(N), N > 1 -> fib1(N-1) + fib1(N-2).

% fib2a is a helper function for fib2
fib2a(0) -> {0,1};
fib2a(N) ->
{FibN 1, FibN 2} = fib2a(N-1),
{FibN 1 + FibN 2, FibN 1}.

fib2(N) when is integer(N), N >= 0 ->
{Ans, } = fib2a(N),
Ans.

Using time it:t I got the following timing data:

N time for fib1(N) time for fib2(N) time for fib3(N)
10 5.2 µs 2.2 µs 2.0 µs
15 39.5 µs 2.2 µs 2.1 µs
20 435.7 µs 2.4 µs 2.3 µs
25 5.0 ms 2.5 µs 2.4 µs
30 53.8 ms 2.6 µs 2.5 µs
35 579.1 ms 2.7 µs 2.6 µs
40 6.6 s 2.9 µs 2.7 µs
50 timeout 3.1 µs 2.9 µs

100 timeout 4.8 µs 4.3 µs
200 timeout 9.4 µs 8.4 µs
300 timeout 14.3 µs 12.8 µs
400 timeout 18.9 µs 17.3 µs
500 timeout 25.1 µs 21.7 µs

(a) (1 point) Which is faster, fib1 or fib2?
Answer: fib2

(b) (2 points) Give a one or two sentence explanation for why one is faster than the other. Your answer should
address the big-O difference between fib1 and fib2.

Answer: fib1(N) is exponential time – it runs in time O(fib1(N)). fib2(N) is linear time
– it runs in time O(N).



(c) (2 points) Is fib2a head recursive or tail recursive?

Answer: head recursive.
Explanation: fib2a performs operations on the result of the recursive call (adding FibN 1+FibN 2
and constructing a tuple) to produce its return result.

(d) (5 points) Write a third implementation of computing the Nth Fibonacci number, call it fib3. fib3
should call a helper function fib3a. fib3 should have the same big-O complexity as fib2, and fib3a
should be head-recursive if fib2a is tail-recursive, and vice-versa.
Hint: I included the run-times for my implementation of fib3.

% Answer:
fib3a(0, FibN 1, ) -> FibN 1;
fib3a(N, FibN 1, FibN 2) ->

fib3a(N-1, FibN 1 + FibN 2, FibN 1).

fib3(N) when is integer(N), N >= 0 ->
fib3a(N, 0,1).

(e) (1 point) True, false, or poetry (any non-empty answer gets full credit): “For loops are evil.”

� True – Mark said it.
� False – I’m an independent thinker.
� Other – please justify an answer of “Other” with a limerick or haiku.

for loops in Python I think that my code is the best.
imperative, sequential My functions and classes sure nest.

confusion Each for-loop is great.
There’s nothing to hate.

I hope that we all pass this test.


