
CpSc 418 Final Exam December 4, 2018

Graded out of 100 points.

Five questions.

0. Who are you? (2 points)

(a) What is your name? Mark Greenstreet

(b) What is your student number? 00000000

1. Matrix-Multiplication (20 points)
Consider matrix multiplication, Z = X Y on a message passing machine with P processors. Let X , Y , and
Z be N × N matrices. Furthermore, we assume that P is a perfect square and that N is a multiple of P .
Each matrix has N2 elements with N2/P elements stored on each processor. In particular, we will have each
processor store a N√

P
× N√

P
submatrix (i.e. “tile”) of each of the X , Y , and Z matrices. We will write X̂I,J to

indicate the submatrix of X that is stored on processor p(I, J)

X̂I,J(i, j) = X((N/
√
P) ∗ I + i, (N/

√
P) ∗ J + j), 0 ≤ I, J <

√
P , 0 ≤ i, j < N/

√
P

and likewise for Y and Z.

(a) (2 points) How many multiply-add operations are required to compute the product of twoN×N matrices?
Your answer should be a formula using the variable N .
N3

(b) (2 points) How many multiply-add operations are required to compute the product of two N√
P
× N√

P
matrices?
Your answer should be a formula using the variables N and/or P .(
N√
P

)3

In a parallel implementation:

• Each processor, p(I, J), sends its submatrix, X̂I,J , to each processor in its “row”, i.e. to processors p(I, 0),
p(I, 1), . . . , p(I,

√
P − 1). Likewise, p(I, J), sends its submatrix, ŶI,J , to each processor in its “column”:

i.e. to processors p(0, J), p(1, J), . . . , p(
√
P − 1, J).

• After these matrices have been sent (and received), each processor, p(I, J), has matrices X̂I,K and ŶK,J
for 0 ≤ K <

√
P .

• Each processor, p(I, J), computes

ẐI,J =

√
P−1∑
K=0

X̂I,K ŶK,J

Assume that the matrix-adds can be done as part of the fused multiply-adds for the matrix multiplications
(they can).

(c) (4 points) How many fused multiply-adds does each processor (e.g. p(I, J)) perform to compute its part
of the product (e.g. ẐI,J)?
Your answer should be a formula using the variables N and/or P .

√
P
(
N√
P

)3

= N3

P

1

(d) (4 points) If we ignore communication time, then the time to compute X Y is just the time for the fused
multiply-adds. Ignoring communication time, what is the speed-up when computing the product Z = X Y
using P processors?
Your answer should be a formula using the variables N and/or P .

SpeedUp =
Tseq

Tpar
= N3

N3/P = P

(e) (4 points) Now, consider communication time. Assume that it takes time λ+Mt0 to send (and receive) a
message of M matrix-elements from one process to another process. With the algorithm described above,
each processor sends (and receives)

√
P − 1 messages to (and from) the other processors in its row, and

another
√
P−1 messages to (and from) the other processors in its column. Each of these messages conveys

one of the X̂ or Ŷ matrices. What is the time spent to send (and receive) messages? Your answer should
be a formula using the variables N , P , λ, and/or t0.

Each process holds a N√
P
× N√

P
block of each matrix. The process sends its block of X to the

√
P − 1 other processes in its row and receives blocks from them. Each exchange takes time

λ + N2

P t0. Likewise, each process sends its block of Y to the other processes in its column and
receives a clock for each of them. This takes additional time of λ + N2

P t0. The total time for
communication is

Tcomm = 2(
√
P − 1)

(
λ+ N2

P t0

)
Note: in practice, it is “impossible” to specify communication cost in enough detail that there
aren’t multiple, plausible interpretations. Alternatively, I could write a full page spelling out the
details, but that is too much reading to process on an exam. Some solutions may charge for the
send and receive separately. That would have a total cost of 4(

√
P − 1)(λ + (N2/P)t0). Such

solutions will get full credit.

(f) (4 points) If the communication time is less than or equal to the computation time, we’ll assume that the
communication can be fully overlapped by the computation. Let λ = 10000 and t0 = 10, and P = 64.
How large must N be for the communication time to be roughly the same as the computation time?
Your answer should be a number.
Hint: You don’t need to figure out the exact answer. 75% credit if you work out the equation in N to solve
no matter what your value is for N . 100% credit if you work out the equation in N , estimate N to within
a factor of 2, and give a one or two-sentence justification for your answer.

Solve for N in

N3

P = 2(
√
P − 1)

(
λ+ N2

P t0

)
⇒ N3 = 2(

√
P − 1)

(
λP + t0N

2
)

⇒ N3 − 2(
√
P − 1)t0N

2 = 2(
√
P − 1)λP

⇒ N3 − 140 ∗N2 = 8.96 ∗ 106, λ = 10000, t0 = 10, P = 64

N will need to be a little larger than 3
√

8.96 ∗ 105 ≈ 210. I’ll try N = 240: N3

P = 21600;

(
√
P − 1)

(
λ+ N2

P t0

)
= 266000. The communication time is larger than the computation time

(by about 23%). Hey – that’s good enough according to the problem statement!
With more tries, we find that computation time dominates communication time for anyN ≥ 266.
That means any answer between 133 and 532 gets full credit, and we don’t have to make special
cases for answers that differ in their solution to Question 1e from the “official” one by a factor or
two.

2. Convolution (40 points)
Often, when computing the convolution of sequences x and y, it is convenient to think of x as being a sequence

2

with 0-based indices: x = x0, x1, . . . , xn−1, and y being a sequence with indices centered at 0: y = y−k,
y−(k−1), . . . , y−1, y0, y1, . . . , yk. Let z = x#y denote the convolution of x and y, and we have:

zi =

k∑
j=−k

xi−jyj

where we treat xi−j as 0 if i− j < 0 or i− j ≥ n.

Although zi could have non-zero elements for any i with −k ≤ i < (n− 1) + k, we often just want the values
of zi for 0 ≤ i < n. That way, z is an array of the same size as x. Figure 1 shows a CUDA implementation of
this convolution computation.

Simple Example:

(a) (2 points) Let n = 5, k = 1, xi = i, y−1 = −1, y0 = 2, y1 = 1. Let z = x#y.
i. What is z0?
z0 = x0y0 + x1y−1 = 0 ∗ 2 + 1 ∗ (−1) = −1

ii. What is z2?
z2 = x1y1 + x2y0 + x3y−1 = 1 ∗ 1 + 2 ∗ 2 + 3 ∗ (−1) = 2

Control flow:

(b) (2 points) What is the purpose of the if-statement on line 6 in Figure 1? In other words, what could go
wrong if that test were omitted?

This if makes sure that the CUDA thread corresponds to an in-bounds element of x and z. This
is because the number of threads in a block is “rounded-up” to accommodate various CUDA
details such as warp size.

(c) (4 points) What is thread divergence? Give a short (i.e. two or three sentence) explanation.
Thread divergence occurs when different threads in the same warp take different execution paths
– for example, some take the then-branch of an if-statement and others take the else-branch.

(d) (4 points) Give two examples of statements that could cause thread divergence in Figure 1. For both of
those statements, give conditions that cause the divergence – for example,

“If <state values for some variables>, then <state what happens>”
1. The if-statement at line 6 – threads that are out-of-range for the x and z arrays will do nothing while

the other threads in the warp perform the convolution.
2. The if-statement at line 18 – threads corresponding to elements of z near the ends of the array will

skip the multiply-add for elements of x that are off the end of the array and treated as if they were 0.

syncthreads:

(e) (4 points) What does the syncthreads() function do? Give a short (i.e. two or three sentence)
explanation.

syncthreads() implements a barrier. All threads in a block must reach this barrier before
any can continue after it.

(f) (4 points) The code in Figure 1 needs a call to syncthreads(). State where the call should be added
and give a short explanation (no more than five sentences).

A call to syncthreads() is needed after the x sh and y sh arrays have been loaded (i.e.
after line 14), and before the values in these arrays are used (i.e. before line 16). This is because
threads in the block access read values from these shared memory arrays that were written by
other threads in the block.
Detail: a correct implementation of the kernel would include a ’}’ to match the ’{’ on line 6 so
all threads in the block will reach the barrier. There would then need to be a new ’if(myId <
n) {’ after the call to syncthreads(). The question didn’t ask for this level of detail; so,
we won’t require it in solutions.

3

Memory:

(g) (1 points) Is the reference to x[myId] on line 8 in Figure 1 a reference to global memory or shared
memory?
global

(h) (3 points) If the reference to x[myId] on line 8 in Figure 1 is a reference to global memory, is it a coa-
lesced reference? If it is a reference to shared memory, does it cause a bank-conflict? Give a one or two
sentence justification for your answer.
Coalesced. Consecutive threads in a warp have consecutive values of myId because of the ’+ threadIdx.x
on line 4.

(i) (1 points) Is the reference to y sh[i] on line 19 in Figure 1 a reference to global memory or shared
memory?
shared

(j) (3 points) If the reference to y sh[i] on line 19 in Figure 1 is a reference to global memory, is it a
coalesced reference? If it is a reference to shared memory, does it cause a bank-conflict? Give a one or
two sentence justification for your answer. No bank conflict. Threads in the same warp have the same
value of i because they execute in lockstep. They have the same value for k because it is the same for all
threads in the kernel. Thus, all threads in the warp are reading from the same location in shared memory.

Kernel launch:

(k) (3 points) Complete the kernel launch on line 32 in Figure 1. In particular, write in your the CUDA code
that should replace your answer(Question1(j)i) here:
conv kernel<<<ceil(n/1024.0),1024>>>(n, k, dev x, dev y, dev z);

CGMA:

(l) (3 points) What is the CGMA for conv kernel when n=1024 and k=4?

Number of floating point operations: n*(2*k+1) - k*(k-1). The k ∗ (k − 1) are for the
operations that are “skipped” when ii<0 or ii >= n. With n = 1024 and k = 4, there are
9204 floating point operations.
The code reads n values from x, reads 2*k+1 values from y, and writes n values to z. Thus,
there are 2*(n+k)+1 memory references. With n = 1024 and k = 4, this means there are 2057
memory references.
The CGMA is 4084/2057 ≈ 4.474.

(m) (3 points) Write a formula for the CGMA for conv kernel in terms of n and k.

Most of my derivation is in my answer to Question 1(k)i:

CGMA = n(2k+1)−k(k−1)
2∗(n+k)+1

= 2nk+n−k2+k)
2n+2k+1

= k + 1
2 −

3k2+k+1/2
2(n+k)+1

(n) (3 points) What is the CGMA for conv kernel when

i. n=1024 and k=90?
55.3

ii. n= 256 and k=90?3cm
79.6 – nearly the CGMA=80 that we need to keep a GTX 1060 fully utilized.

3. Sorting on a GPU (15 points) Consider sorting on an array of floats on a GPU using the bitonic sort algo-
rithm. For its artistic value, Figure 2 shows the sorting network for bitonic sort with 8 inputs.

4

(a) (1 point) How many compare-and-swap operations are performed by the 8-input bitonic sort? 24 – just
count them in the figure

(b) (1 point) What is the span for the 8-input bitonic sort? 6

(c) (2 points) How many compare-and-swaps are performed by a N -input bitonic sort? Check one of the
following:

2 N

2 N log2N

� N
4 (log2N)(1 + log2N)

2 N
2 (log2N)2

2 N2

2

2 N !

(d) (4 points) A compare-and-swap of x and y can be performed as min(x,y) and max(x,y). Assume that
min(x,y) counts as a single floating point operation, and likewise for max(x,y). Thus, a compare-
and-swap counts as two floating point operations. How many floating operations are performed by bitonic
sort for an input with 2k values?
N
2 (log2N)(1 + log2N)

(e) (2 points) If we load 2k values from the global memory into shared memory, sort them, and then write the
sorted result back to the global memory, what is the total number of global memory accesses performed
by the sort? 2k+1

(f) (2 points) On a GPU, we will store the data to be sorted in the shared memory of an SM. A block can have
at most 48 Kbytes of shared memory, and a float has a size of 4 bytes. What is the largest integer k such
that 2k floats can be stored in the shared memory of one bloc?

k = 13.
48 Kbytes/(4 bytes/float) = 12288floats. The largest power of 2 that is less than or equal
to 1228 is 8192 = 213.

(g) (2 points) For the value of k from your answer to Question 1(l)vi, what is the CGMA?
Note: this is the CGMA for a single block. We could perform a sort of more than 2k elements by sorting
groups of 2k as described here, and launching a subsequent kernel or two to merge those results. That
would make this question way more complicated. Furthermore, the CGMA for a single block is pretty
close to the CGMA for the entire computation – adding more blocks scales up the number of floating point
operations and the number of memory accesses at the same rate.

CGMA = #floating−pointoperations
#globalmemoryaccesses

= 2k−1k(k+1)
2k+1 , k = log2N

= k2+k
4

= 43, k = 13

(h) (3 points) For GPUs like the GTX 1060s in the linXX machines, is the critical bottleneck for bitonic sort
memory bandwidth or the number of computations performed? Is it likely that another algorithm will be
much faster than bitonic sort when run on a GPU? Give a short justification for your answer.

The GTX 1060 requires a CGMA of 80 or more to keep the SPs fully utilized. Bitonic sort
achieves about half of that. Thus, memory bandwidth will probably be the critical bottleneck.
Any other algorithm will need to read the unsorted data from the global memory and write the
sorted result back. Thus, any algorithm will have at least as many global memory accesses as
bitonic sort. It is unlikely that another algorithm will run faster than bitonic sort on the GPU.

4. Bitonic Sequences (10 points)

5

(a) (6 points) Let n > 0, and let x0, x1, . . . , xn−1 be a bitonic sequence of n 0s and 1s. You can assume that
x is of the form 0∗1∗0∗. Define y as the sequence with:

y0 = xn−1

yi = xi−1, 1 ≤ i < n

Prove that y is bitonic.

Case xn−1 = 0: Then x is of the form pqr0 where p, r ∈ 0∗ and q ∈ 1∗. We have that y = 0pqr ∈
0+1∗0∗. Thus y is bitonic.

Case xn−1 = 1: Then x is of the form pq1 where p ∈ 0∗ and q ∈ 1∗. We have that y = 1pq ∈ 10∗1∗.
Thus y is bitonic.

(b) (4 points) Let x0, x1, . . . , xn−1 be a bitonic sequence of n numbers, and let y be defined as in Ques-
tion 1(m)i. Show that you can choose x such that y is not bitonic.

Let x = [0, 3, 2, 1]. x is bitonic. By the construction for y, y = [1, 0, 3, 2] which is not bitonic.
Observation: From part a, we get that if a sorting network produces a correctly sorted output
for any bitonic intput, then it generates a correctly sorted output for any cyclic rotation of a
bitonic input. In particular, a bitonic-merge will generate a correctly sorted output for any cyclic
rotation of a bitonic input. From part b, we get that a cyclic rotation of a bitonic sequence is not
necessarily bitonic. But, a bitonic merge will sort it correctly anyway!

5. Other Stuff (15 points)

(a) Fused multiply-add (4 points)
i. (1 point) What is a fused multiply-add?

A fused multiply add is a hardware optimization that allows a multiply followed by an add to be
performed as a single operation.

ii. (1 point) When counting the number of floating point operations performed by a computation, how
many floating point operations is one fused multiply-add?
2

iii. (1 point) Give an example of an expression consisting of one multiply and one add where the opera-
tions can be combined into a single fused multiply-add operation.
a*x + b

iv. (1 point) Give an example of an expression consisting of one multiply and one add where the opera-
tions cannot be combined into a single fused multiply-add operation.
a*(x + b)

(b) (6 points) Consider a problem whose sequential version takes time N3/2. A parallel implementation
running on P takes time time N3/2

P + (
√
N + λ) log2 P . Let N = 106 and λ = 104. Calculate the

speed-up for

i. P = 26 = 64

SpeedUp =
Tseq

Tpar

= N3/2

(N3/2/P)+(
√
N+λ) log2 P

= P
1+(1+λ/

√
N)P (log2 P)/N

= P
1+1.1∗10−5P log2 P

, N = 106, λ = 104

≈ 63.73, P = 64

ii. P = 210 = 1024
920

6

iii. P = 214 = 163842cm
4650

(c) True or false (4 points)
true If a cache line in the MESI protocol is in state M , then no other cache has data for this address.
false The cross-section width of a N ×N 2D-mesh is Θ(N logN).
true Using energy scaling, it is possible to have a parallel algorithm that performs more operations in

less time and using less energy than the best sequential algorithm.
false All blocks of a CUDA grid must execute at the same time.

(d) Confused multiply-add (1 point).
Give an example of a confused multiply-add. Extra credit will be considered for creative answers.
banana*aardvark + boat = 42

7

1: shared float x sh[1024];
2: shared float y sh[1024];

// convolution kernel
3: global void conv kernel(uint n, int k, float *x, float *y, float *z) {
4: uint myId = blockDim.x*blockIdx.x + threadIdx.x;
5: uint k2p1 = 2*k+1;
6: if(myId < n) {
7: // load x
8: float xx = x[myId];
9: x sh[myId] = xx;

10: // load y
11: if(myId < k2p1) {
12: float yy = y[myId];
13: y sh[myId] = yy;
14: }
15: float sum = 0.0f;
16: for(int i = -k; i <= k; i++) {
17: int ii = myId - i;
18: if((0 <= ii) && (ii < n))
19: sum += x sh[ii] * y sh[i+k];
20: }
21: z[myId] = sum;
22: }
23: }

// wrapper function to call from C
24: void conv(uint n, int k, float *x, float *y, float *z) {
25: size t sz x = n*sizeof(float);
26: size t sz y = k*sizeof(float);
27: cudaMalloc((void**)(&dev x), sz x);
28: cudaMalloc((void**)(&dev y), sz y);
29: cudaMalloc((void**)(&dev z), sz x);
30: cudaMemcpy(dev x, x, sz x, cudaMemcpyHostToDevice);
31: cudaMemcpy(dev y, y, sz y, cudaMemcpyHostToDevice);
32: conv kernel<<<your answer(Question1(j)i),1024>>>(n, k, dev x, dev y, dev z);
33: cudaMemcpy(z, dev z, sz x, cudaMemcpyDeviceToHost);
34: cudaFree(dev x);
35: cudaFree(dev y);
36: cudaFree(dev z);
37: }

Figure 1: CUDA implementation of convolution

8

in[7]

out[0]

out[1]

out[2]

out[3]

out[4]

out[5]

out[6]

out[7]

in[0]

in[1]

in[2]

in[3]

in[4]

in[5]

in[6]

Figure 2: Bitonic Sort with 8 inputs

9

