
Odd-Even Exchange Sorting
Let A0 be an array with N elements, indexed A0[0], . . . A0[N − 1] where each element is 0 or 1. For simplicity, I’ll
assume that N is even – this reduces the number of cases in the arguments below. I believe that the proof when N is
odd is similar. For 0 < i ≤ N , let

Ai+1[2j] = min(Ai[2j], Ai[2j + 1]) , if i is even, and 0 ≤ j < N/2
= max(Ai[2j − 1], Ai[2j + 1]) , if i is odd, and 0 < j < N/2
= Ai[0] , if i is odd, and j = 0

Ai+1[2j + 1] = max(Ai[2j], Ai[2j + 1]) , if i is even, and 0 ≤ j < N/2
= min(Ai[2j + 1], Ai[2j + 2]) , if i is odd, and 0 ≤ j < N/2− 1
= min(Ai[2j − 1], Ai[2j + 1]) , if i is odd, and j = 0

Our claim is that AN is sorted.
First I tried some examples that I thought might be indicative of cases that take the most number of steps to sort.

Figure 1 shows these examples. Consider the number of steps it takes to get all of the 0s into the correct positions; if
the 0s are in the correct places, the 1s will be as well. Looking at the figures, 0s move along diagonal paths (upward,
to the right) to reach their destination.

Let
zbefore(Ai, k) = |j|(Ai[j] = 0) ∧ j < k| , number of 0s before Ai[k]
zafter (Ai, k) = |j|(Ai[j] = 0) ∧ j > k| , number of 0s after Ai[k]

If Ai[k] is 0, then z(Ai, k) gives the location where this 0 should be stored in the sorted array. From the examples, it
appears that a 0 in location k of Ai must reach location zbefore(Ai, k) zafter (Ai, k) or zafter (Ai, k) + 1 cycles before
the end. Whether it’s zafter (Ai, k) cycles before or zafter (Ai, k) + 1 depends on whether the final location is even or
odd as described below.

One more observation: For 0 < i ≤ N , we’ll say that a 0 moved into Ai[k] if (Ai−1[k] = 1) ∧ (Ai[k] = 0). For
any 0 < i ≤ N and 0 ≤ k < N , if a 0 moved into Ai[k], then i+ k is odd.

I’ll now combine these observations into a conjecture. The idea is to figure out a bound on k when Ai[k] = 0
based on i and zbefore(Ai, k) and zafter (Ai, k). The last 0 must reach its final location by AN . This means that a 0 in
location k of Ai must reach location zbefore(Ai, k) by time (iteration of the i loop) N − zafter (Ai, k).

If location zbefore(Ai, k) is even, the zero can only move to its final location on an odd step, and if location
zbefore(Ai, k) is odd, the zero can only move to this location on an even step. In other words, if zbefore(Ai, k) and
N − zafter (Ai, k) are both even (or both odd), then the deadline for the 0 arriving at its final location is one iteration
of the i loop earlier. If zbefore(Ai, k) and N − zafter (Ai, k) are both even (or both odd) then N − (zbefore(Ai, k) +
zbefore(Ai, k) is even. By the assumption that N is even, this means that zbefore(Ai, k) + zbefore(Ai, k is even. Let
N0 be the number of 0s in the array, and note that if Ai[k] = 0, then zbefore(Ai, k) + zafter (Ai, k) = N0 − 1. Thus,
zbefore(Ai, k) + zbefore(Ai, k) is even iff N0 is odd. This means that a 0 in location k of Ai must reach location
zbefore(Ai, k) by time N − zafter (Ai, k) if N0 is even, and by time N − zafter (Ai, k)− 1 if N0 is odd. This gives us
a simple formula for when a 0 in position k of Ai must reach position zbefore(Ai, k):

A 0 in location k of Ai must reach location zbefore(Ai, k) by time

N − zafter (Ai, k)− (N0 mod 2)

Finally, I’ll propose that if a 0 is to make it to its final location by step s, it can be at most s− i locations away on
step i (for i < s). This condition is clearly necessary. Now, I’ll try to prove by induction that it is also sufficient.
Lemma: For all 0 ≤ i ≤ N and all 0 ≤ k < N if Ai[k] = 0, then

k − zbefore(Ai, k) + i ≤ N − zafter (Ai, k)− (N0 mod 2)
or k = zbefore(Ai, k)

1

i 0 1 2 3 4 5 6 7 8 9 10 i 0 1 2 3 4 5 6 7 8
k + ----------------------- k +------------------
0 | 1 1 1 1 1 0 0 0 0 0 0 0 | 1 1 1 1 1 0 0 0 0
1 | 1 1 1 1 0 1 0 0 0 0 0 1 | 1 1 1 1 0 1 0 0 0
2 | 1 1 1 0 1 0 1 0 0 0 0 2 | 1 1 1 0 1 0 1 0 0
3 | 1 1 0 1 0 1 0 1 0 0 0 3 | 1 1 0 1 0 1 0 1 0
4 | 1 0 1 0 1 0 1 0 1 0 0 4 | 0 0 1 0 1 0 1 0 1
5 | 0 1 0 1 0 1 0 1 0 1 1 5 | 0 0 0 1 0 1 0 1 1
6 | 0 0 1 0 1 0 1 0 1 1 1 6 | 0 0 0 0 1 0 1 1 1
7 | 0 0 0 1 0 1 0 1 1 1 1 7 | 0 0 0 0 0 1 1 1 1
8 | 0 0 0 0 1 0 1 1 1 1 1
9 | 0 0 0 0 0 1 1 1 1 1 1

i 0 1 2 3 4 5 6 7 8 9 10 In these diagrams, column i is A_i.
k + ----------------------- Row k of column k is A_i[k].
0 | 1 1 1 1 1 1 1 1 1 0 0 Note how 0s move upard along diagonals.
1 | 1 1 1 1 1 1 1 1 0 1 0 The 0 that settles in row k is there by
2 | 1 1 1 1 1 1 1 0 1 0 1 i=N-z_after(A_i, k).
3 | 1 1 1 1 1 1 0 1 0 1 1 If a 0 settles in row k with k even,
4 | 1 1 1 1 1 0 1 0 1 1 1 it must arrive on an odd-numbered cycle.
5 | 1 1 1 1 0 1 0 1 1 1 1 If k is odd, then the 0 must arrive on
6 | 1 1 1 0 1 0 1 1 1 1 1 an even numbered cycle.
7 | 1 1 0 1 0 1 1 1 1 1 1
8 | 0 0 1 0 1 1 1 1 1 1 1
9 | 0 0 0 1 1 1 1 1 1 1 1

Figure 1: Some examples of odd-even exchange sort

2

Note: The left side of the first inequality is the earliest step that the 0 at location k in Ai can reach location
zbefore(Ai, k). The right side of the inequality is the time by which it “needs” to be there based on observations
from the examples in Figure ??. Thus, the first condition says that the 0 can make it to its destination on time if it
moves one position in each time step. The second condition says that the 0 has already made it to its final location.
Proof: by induction on i.

Base case, i = 0:
Choose k such that A0[k] = 0.

1. k < N − zafter (A0, k) , there are at least zafter (A0, k) positions in Ai after k
2. zbefore(Ai, k) ≥ 0 , definition of zbefore
3. N0 mod 2 ≥ 0 , it’s either 0 or 1
4. k − zbefore(A0, k) + 0 ≤ N − zafter (A0, k)− (N0 mod 2) , 1, 2, and 3

Induction step, 0 < i ≤ N . Choose k such that Ai[k] = 0. I’ll consider four cases based on the even or oddness of
i and k.

i is even and k is even: If k = 0 then zbefore(Ai, k) = 0 and the 0 is in its final location. Otherwise, Ai

was obtained from Ai−1 by performing a compare and swap between locations 2j + 1 and 2j + 2 for
0 ≤ j < N/2− 1. Because k is even, there is some j such that k = 2j + 2. This means that

Ai−1[k−1] = Ai−1[k] = Ai[i−1] = Ai[k] = 0zbefore(Ai−1, k−1) = zbefore(Ai, k−1) = zbefore(Ai, k)−1 = zbefore(Ai−1, k)−1zafter (Ai−1, k−1) = zafter (Ai, k−1) = zafter (Ai, k)+1 = zafter (Ai−1, k)+1

From the induction hypothesis for i− 1 and k − 1:

(k − 1)− zbefore(Ai−1, k − 1) + (i− 1) ≤ N − zafter (Ai−1, k − 1)− (N0 mod 2)
k − zbefore(Ai, k − 1) + i− 2 ≤ N − zafter (Ai, k − 1)− (N0 mod 2)

k − (zbefore(Ai, k)− 1) + i− 2 ≤ N − (zafter (Ai, k) + 1)− (N0 mod 2)
k − zbefore(Ai, k) + i ≤ N − zafter (Ai, k)− (N0 mod 2)

which shows that the induction hypothesis continues to hold.

i is even and k is odd: If Ai−1[k] = 1, then Ai−1[k + 1] = 0; zbefore(Ai, k) = zbefore(Ai−1, k + 1); and
zafter (Ai, k) = zafter (Ai−1, k + 1). From the induction hypothesis for i− 1 and k + 1:

(k + 1)− zbefore(Ai−1, k + 1) + (i− 1) ≤ N − zafter (Ai−1, k + 1)− (N0 mod 2)
k − zbefore(Ai, k) + i ≤ N − zafter (Ai, k)− (N0 mod 2)

which shows that the induction hypothesis continues to hold in the case that Ai−1[k] = 1.
If Ai−1[k] = 0, then the compare-and-swap for Ai−1[k] and Ai−1[k = 1] did not swap its inputs. Thus,
zbefore(Ai, k) = zbefore(Ai−1, k); and zafter (Ai, k) = zafter (Ai, k + 1). We need to show that we have
“one to spare” in the inequality for the induction hypothesis at i − 1 and k. Here we exploit the details
about oddness and evenness. From the induction hypothesis, we get:

k − zbefore(Ai−1, k) + (i− 1) ≤ N − zafter (Ai−1, k)− (N0 mod 2)
≡ k + i− 1 ≤ N + zbefore(Ai−1, k)− zafter (Ai−1, k)− (N0 mod 2)

Because i is even and k is odd, k + i − 1 is even. Because zbefore(Ai−1, k) + zafter (Ai−1, k) = N0 − 1
and N is even, N + zbefore(Ai−1, k)− zafter (Ai−1, k)− (N0 mod 2) is odd. Therefore,

k + i− 1 6= N + zbefore(Ai−1, k)− zafter (Ai−1, k)− (N0 mod 2)

and we conclude

k + i− 1 < N + zbefore(Ai−1, k)− zafter (Ai−1, k)− (N0 mod 2)
≡ k − zbefore(Ai−1, k) + (i− 1) < N − zafter (Ai−1, k)− (N0 mod 2)
≡ k − zbefore(Ai, k) + i ≤ N − zafter (Ai, k)− (N0 mod 2)

3

which shows that the induction hypothesis continues to hold in the case that Ai−1[k] = 0.
Combining these two cases shows that the induction hypothesis continues to hold in the case that i is even
and k is odd.

i is odd and k is even: This is very similar to the case where i is even and k is odd. You can work out the
details if you want some practice with proofs of this kind.

i is odd and k is odd: This is very similar to the case where i is even and k is even, but we don’t have to
consider a special case for k = 0. Again, feel free to work out the details if you’re interested.

�
From the lemma, it immediately follows that for all 0 ≤ k < N , if AN [k] = 0 then k = zbefore(AN , k). In other

words, if AN [k] is zero, then for all 0 ≤ j < k, A[j] = 0. This shows that AN is sorted as claimed.

Exercises
1. Show that N − 1 steps are not sufficient to sort all inputs consisting of 0s and 1s.

2. I assumed that N is even. What changes are needed to the proof if N is odd?

3. There must be a simpler proof. I’ll check Knuth Vol. 3. Let me know if you find a better/simpler argument.

4

