
CpSc 418: Parallel Computation

Topics and Concepts

1 Performance

Measuring Performance:

• Throughput vs. latency

• speedUp =
Tsequential

Tparallel

• Superlinear speed-up: what it is, typical causes.

Performance Loss

• Overhead: resources needed by the parallel algorithm that the sequential algorithm doesn’t have.

• Other causes of performance loss: non-parallelizable code, contention, idle processors.
Sometimes, the parallel algorithm is fundamentally different than the sequential one.

• Amdahl’s Law

• Embarrassingly parallel applications.

2 Architecture

Superscalar architectures

• Instruction-level parallelism

• Tracking instruction dependencies with register renaming

• Executing during cache-misses.

• Examples of high instructions per cycle (IPC), and low IPC programs.

• The poor scalability of superscalar architectures.

Message passing machines

• Network topologies: ring, mesh, torus, hypercube.

• Cross-section bandwidth.

• Why high-dimensional machines become “all wire”.

• Advantages of communication with nearby processors.

• Examples of large-scale message passing machines: supercomputers such as Jaguar and Tianhe 2.

1



Shared Memory Machines

• Cache coherence protocols: MESI

• Sequential consistency: the parallel execution appears as if all reads and writes were done one-
at-a-time using a (very fast) global memory.

• Real computers make memory guarantees that aren’t as strong as sequential conistenty –
to get better performance using write buffers.

• Examples of shared-memory machines: multicore x86 CPUs, large commercial database servers,
Intel’s Xeon Phi.

3 Algorithms

Parallel models of computation

• PRAM: once popular with theoreticians, not very realistic.
Valiant’s find the max in log logN parallel time.

• CTA: communication has cost λ.
λ� 1 – models high communication cost for typical parallel software.
Even shared memory machines have communication costs: cache miss penalties, fences, etc.
For very large number of processors, need to consider network bandwidth constraints (see note
about cross-section bandwidth above.

Simple algorithms for illustrating parallel computation

• Count 3’s

• matrix multiply

• prime seive, Collatz length

Reduce and Scan

• Parallelism for associative operations

• Reduce computes a single result

• Scan computes a result for each prefix of the input array or list.

• Should be able to draw the tree depicting the computation.

• Should be able to write code (or pseudocode) for usinng reduce and scan.

Sorting

• The 0-1 principle

• The monotonicity lemma

• Some parallel sorting algorithms: odd-even exchange, shear sort, bitonic sort, the HW4.Q3 algo-
rithm

Algorithms for coordinating parallel computation

• Producer-consumer: what it does, how it works, the role of mutexes and condition variables.

• Mutual exclusion: Dekker, Peterson, Lamport.

• Invariants

2



4 Applications

Erlang

GPUs

Map-Reduce

PReach

3


