
Review and Wrap-Up

Mark Greenstreet

CpSc 418 – Nov. 28, 2013

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 1 / 28

Lecture Outline

Review and Everything Else
Review

I Scan
I Producer-Consumer
I Bitonic Sorting
I . . .

Everything Else
I Energy and Computing
I Tilera/Raw
I Silicon Photonics
I nano-tubes, graphene, MEMs
I Computing for the next 10+ years
I My research

Correctness of shared memory programs
I Bad stuff: Races, deadlock, livelock
I Good stuff: Invariants

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 2 / 28

Scan
How to design Leaf1, Leaf2, and Combine
. . .

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 3 / 28

Other HW4 stuff
Q2.a is easy.
What is “show” as in “Show that F commutes with my merge”?

I You need to show that the claim holds for all cases.
I Your argument needs to be convincing.
I You need to convince the reader (me, the TA’s etc.) that the claim

holds.
F This may not mean showing every last detail of the derivation.
F But you do need to show enough that the pieces we fill-in are things

like being able to conclude that if x ≤ y − 1 then x < y , simple
algebra, etc.

I You need to convince the reader that you really understood the full
argument.

F No gaps in the proof that I could probably fill in but leave doubts about
whether you got stuck.

I Statement/reason proofs are great.
F If you tell me why you can make an inference, then I’ll believe that you

understood it.
F “It’s obvious” is not a good “reason”.
F “algebra” or “implied by steps 2, 3, and 5” can be very good reaons.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 4 / 28

Producer-Consumer

Problem statement:
I The producer generates a sequence of data values: v1, v2,
I The consumer reads this sequence from the producer.
I If the consumer is ready to read a value and none is available from

the producer, then the consumer stalls until the a data value is
available.

I Likewise, we can implement this interface with a fixed-capacity
buffer.

F In this case, if the producer generates a value and there is no empty
space available in the buffer, the producer stalls until the value can be
written to the buffer.

We’ll look at an implementation using a shared, fixed-sized array
as a buffer.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 5 / 28

Producer-Consumer: try 1
Value buffer[n]; // shared buffer
int wptr, rptr; // indices for current write and read positions

int next(int i) { // cyclic successor of i
return((i+1) % n);

}
void put(Value v) { // called by producer

if(next(wptr) != rptr) {
buffer[wptr] = v;
wptr = next(wptr);

} else ???
}
Value take() { // called by consumer

if(rptr != wptr) {
Value v = buffer[rptr];
rptr = next(rptr);
return(v);

} else ???
}

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 6 / 28

Producer-Consumer: try 2

void put(Value v) { // called by producer
while(next(wptr) == rptr); // wait for empty space
buffer[wptr] = v;
wptr = next(wptr);

}
Value take() { // called by consumer

while(rptr == wptr); // wait for data to arrive
Value v = buffer[rptr];
rptr = next(rptr);
return(v);

}

What’s wrong with this solution?

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 7 / 28

Condition Variables (try cond-1)

wait(cond); this thread waits until a signal is sent to cond.
signal(cond); this thread sends a signal to cond.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 8 / 28

Producer-Consumer: try 3
Cond w cond, r cond; // condition variables

void put(Value v) { // called by producer
int oldwptr = wptr;
if(next(wptr) == rptr)

wait(w cond);
buffer[wptr] = v;
wptr = next(wptr);
if(oldwptr == rptr)

signal(r cond);
}
Value take() { // called by consumer

int oldrptr = rptr;
if(rptr == wptr)

wait(r cond);
Value v = buffer[rptr];
rptr = next(rptr);
if(next(wptr) == oldrptr)

signal(w cond);
return(v);

}

What’s wrong with this solution?Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 9 / 28

Mutex Variables

lock(mutex); this thread acquires a lock on mutex.
I Only one thread can have the lock at a time.
I If a thread θi attempts to lock a mutex that thread θj has already

locked, then thread θi will block.
unlock(mutex); this thread releases its lock on mutex.

I If one or more threads are blocked trying to lock the mutex, then
one of them will acquire the lock.

I If multiple threads are waiting for the mutex, an arbitrary one gets it.
I There is no promise or intent of first-come-first-served awarding of

the mutex to waiting threads.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 10 / 28

Producer-Consumer: try 4
Mutex m; // a mutex variable
void put(Value v) { // called by producer
int oldwptr = wptr;
lock(m);
if(next(wptr) == rptr)

wait(w cond);
buffer[wptr] = v;
wptr = next(wptr);
if(oldwptr == rptr)

signal(r cond);
unlock(m);

}
Value take() { // called by consumer

int oldrptr = rptr;
lock(m);
if(rptr == wptr)

wait(r cond);
Value v = buffer[rptr];
rptr = next(rptr);
if(next(wptr) == oldrptr)

signal(w cond);
unlock(m);
return(v);

}

What’s wrong with this solution?
Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 11 / 28

Condition variables and mutexes

We need a mutex with each condition variable
I Otherwise, we can’t safely check the wait condition.

If the thread needs to wait, then the mutex needs to be unlocked
after the thread is waiting for the signal.

I But, if the thread is waiting for a signal, then it’s blocked,
I . . . and it can’t do anything.
I In particular, it can’t unlock the mutex.

Solution: the wait function handles the mutex lock:
I When the thread is suspended, wait unlocks the mutex.
I When the thread is resumed, wait relocks the mutex.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 12 / 28

Producer-Consumer: final solution
void put(Value v) { // called by producer

int oldwptr = wptr;
lock(m);
if(next(wptr) == rptr)

wait(w cond, m);
buffer[wptr] = v;
wptr = next(wptr);
if(oldwptr == rptr)

signal(r cond);
unlock(m);

}
Value take() { // called by consumer

int oldrptr = rptr;
lock(m);
if(rptr == wptr)

wait(r cond, m);
Value v = buffer[rptr];
rptr = next(rptr);
if(next(wptr) == oldrptr)

signal(w cond);
unlock(m);
return(v);

} We could unlock the mutex while updating buffer, rptr, and wptr. Should we?

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 13 / 28

Mutexes

The mutex type: pthread mutex t

declare and initialize a mutex:
pthread mutex t my mutex;
pthread mutex init(&my mutex, NULL);

using a mutex:
I pthread mutex lock(&my mutex);
I pthread mutex unlock(&my mutex);
I pthread mutex trylock(&my mutex);
I pthread mutex destroy(&my mutex);

usage:
I Typically, a mutex is associated with a shared data structure.
I A thread acquires the mutex before accessing the data structure.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 14 / 28

Condition Variables

The condition variable type: pthread cond t

declare and initialize a condition variable:
pthread cond t my cond;
pthread cond init(&my cond, NULL);

using a condition:
I pthread cond wait(&my cond);
I pthread cond signal(&my cond);
I pthread cond broadcast(&my cond);
I pthread cond destroy(&my cond);

condition variables and locks:

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 15 / 28

Spurious wake-ups

Threads can wake-up “spontaneously”
I This arises from performance optimizations in the OS.
I There are races that are better to expose to the application than it

would be to create a sequential bottleneck in the kernel.
WRONG:

if(condition)
wait(cond, m);

RIGHT:
while(condition)

wait(cond, m);

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 16 / 28

Producer-Consumer: final version
void put(Value v) { // called by producer

int oldwptr = wptr;
lock(m);
while(next(wptr) == rptr)

wait(w cond, m);
buffer[wptr] = v;
wptr = next(wptr);
if(oldwptr == rptr)

signal(r cond);
unlock(m);

}
Value take() { // called by consumer

int oldrptr = rptr;
lock(m);
while(rptr == wptr)

wait(r cond, m);
Value v = buffer[rptr];
rptr = next(rptr);
if(next(wptr) == oldrptr)

signal(w cond);
unlock(m);
return(v);

}

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 17 / 28

Bitonic Merge
Convert a bitonic sequence to a monotonic one.

Let x0, x1, . . . , xN−1 be a bitonic sequence, with N even.
Let

yi = min(xi , xi+N
2
) , if 0 ≤ i < N

2

= max(xi , xi−N
2
) , if N

2 ≤ i < N

Then
I Either y0, . . . y N

2 −1 is all zeros or y N
2
, . . . yN−1 is all ones, and is

bitonic.
Proof:

F If x0, . . . x N
2 −1 or x N

2
, . . . xN−1 is clean, then either y0, . . . y N

2 −1 or
y N

2
, . . . yN−1 is clean, and the other is just a copy of the other half of x

and therefore bitonic.
F If neither x0, . . . x N

2 −1 nor x N
2
, . . . xN−1 are clean, x0, . . . x N

2 −1 is
positive monotonic and x N

2
, . . . xN−1 is negative monotonic, and the

result follows by an argument like the one we used for Shear sort.
F Note that in the second case, the bitonic part can be either↗↘ or
↘↗ bitonic.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 18 / 28

Bitonic Merge: The Big-Picture
Big picture: the largest element of y0, . . . y N

2−1 is less than or equal
to the smallest element of y N

2
, . . . yN−1.

Now, recurse to convert y0, . . . y N
2−1 and y N

2
, . . . yN−1 into

monotonic sequences.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 19 / 28

Bitonic Sort

Assume N is a power of 2.
Sorting an array with one element is easy.
Sorting an array with two elements is a single-compare and-swap.
To sort an array with four elements:

I Sort elements x0 and x1 in ascending order.
I Sort elements x2 and x3 in descending order.
I Now, the list [x0, x1, x2, x3 is↗↘ bitonic.
I Use a 4-way merge.

To sort an array with N elements (N > 2):
I Sort elements x0, . . . , x N

2 −1 in ascending order.
I Sort elements x N

2
, . . . , xN−1 in descending order.

I Now, the list [x0, x1, . . . , xN−1 is↗↘ bitonic.
I Use a N-way merge.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 20 / 28

That’s Odd (1 of 3)
What if N is odd?

Let x0, x1, . . . , xN−1 be a bitonic sequence, with N odd.
Let

yi = min(xi , xi+N+1
2
) , if 0 ≤ i < N−1

2

= xi , if i = N−1
2

= max(xi , xi−N+1
2
) , if N+1

2 ≤ i < N

Then
I Either y0, . . . y N−1

2 −1 is all zeros or y N−1
2
, . . . yN−1 is all ones.

Proof:
F Pretty much like the case when N is even, with some extra care for

y N−1
2

.
F Assume x is↗↘ bitonic. The argument for the other case is

equivalent.
F If x N−1

2
is 0, see slide 22.

F Else x N−1
2

is 1, see slide 23.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 21 / 28

That’s Odd (2 of 3)

If x N−1
2

is 0,

Either x0, . . . x N−1
2 −1 is constant zero or xN+12, . . . xN−1 is constant

zero.
y0, . . . x N−1

2 −1 is constant zero.

y N+1
2
, . . . yN−1 is↗↘ bitonic.

0, y N+1
2
, . . . yN−1 is↗↘ bitonic.

y N−1
2
, y N+1

2
, . . . yN−1 is↗↘ bitonic.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 22 / 28

That’s Odd (3 of 3)

If x N−1
2

is 1, then
I ? If x N+1

2
= 0, then

F x N+1
2
, . . . , xN−1 is constant 0.

F x0, . . . , x N−1
2

is positive monotonic.
F y N+1

2
, . . . , yN−1 = x0, . . . , x N−1

2
.

F 0, y N+1
2
, . . . , yN−1 is bitonic.

F y N−1
2

, y N+1
2
, . . . , yN−1 is bitonic.

Short version: if N is odd:
I Perform a round of compare-and-swap operations with stride N+1

2 .
I Perform bitonic merge on y0, . . . , y N−1

2 −1, and a separate merge on
y N−1

2
, . . . yN−1.

The first sequence has
⌊N

2

⌋
elements and the second has

⌈N
2

⌉
elements.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 23 / 28

Bitonic Time

A M-way merge has dlog2(M)e stages of compare-and-swap
elements.

I Each stage has ∼ M/2 compare and swap operations.
I The merge can be done in O(log(M)) parallel time with

O(M log(M)) compare-and-swap operations.
Bitonic sort of N elements requires merges of size N, N/2, . . . , 2.

I Bitonic sort can be done in O(log2(N)) parallel time.
I A total of O(N log2(N)) compare-and-swap operations are

performed.
Beware of communication overheads

I A time cost of log2(N)λ for communication if we don’t worry about
bandwidth.

I No matter how you arrange the processors, bitonic sort requires
several exchanges of the full data set across any network bisection.

I If the network bisection bandwidth is o(N), then this becomes the
bottleneck.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 24 / 28

Energy and Computing
Power consumption is the key performance limitter for sequential
computing.

I This is why the world of computing has gone parallel.
I Parallelism from fine-grained, data-parallelism of GPUs to big

cloud/cluster computers.
I Communication is the key consideration of parallel performance
I Then energy to compute something is strongly connected to:

F how many bits have to move,
F how far they have to move,
F how fast they need to get there.

I Counting operations is at best a very indirect measure of the
resources (time, energy, etc.) needed for the computation.

Communication costs:
I Fixed cost model: λ

F Reminds us the communication is expensive.
F Ignores constraints of network topology.

I Network cross-section bandwidth critical for many computations.
F Sorting is an example.

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 25 / 28

Other ways to compute

RAW/Tilera: http://tilera.com/,
http://dx.doi.org/10.1109/MM.2002.997877

Silicon photonics:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5071306

nano-tubes, graphene
other?

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 26 / 28

http://tilera.com/
http://dx.doi.org/10.1109/MM.2002.997877
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5071306

My research

It’s really cool.
Let me tell you about it...

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 27 / 28

Finally, the final

Review sessions
I Monday, Dec. 2, 10:30am-12noon, ICCS X836
I Tuesday, Dec. 3, 10:30am-12noon, ICCS X836

Mark Greenstreet Review and Wrap-Up CpSc 418 – Nov. 28, 2013 28 / 28

