Peterson’s Mutual Exclusion Algorithm

Mark Greenstreet

CpSc 418 — Nov. 14, 2013

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 0/16



Lecture Outline

This is a draft version of the slides.

@ Mutual Exclusion

@ Peterson’s algorithm

@ Proving Peterson’s algorithm correct
@ Mutual Exclusion in the real world.

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 1/16



Mutual Exclusion: Usage

@ A mutual exclusion algorithm provides two operations:
» lock (threadId): the thread specified by thread1d acquires the

lock.
» unlock (threadId): the thread specified by threadId releases

the lock.

@ Usage:
» Initially, no thread has the lock.
» If a thread does not have the lock, it may call 1ock (threadId).
» When lock (threadid) returns, the thread specified by
threadId has the lock.
» If a thread has the lock it must eventually call unlock (threadid).
» When unlock (threadId) returns, the thread specified by
threadId no longer has the lock.
» Itis an error:
* To call lock (threadId) if the thread already has the lock.
* Tocallunlock (threadId) if the thread does not have the lock.

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 2/16



Mutual Exclusion: Guarantees

@ A correct mutual exclusion algorithm guarantees:
» Mutual exclusion: at most one thread has the lock at any time.
» No Deadlock: if one or more threads have requested the lock, some
thread will eventually receive the lock.
» No Starvation: if a thread requests the lock, it will eventually acquire
it.

@ A few notes:

» Even if the mutual-exclusion algorithm is deadlock free, a program
may deadlock, e.g. cycles of locks.

» Freedom from starvation is nice, but there are practical algorithms
that don’t guarantee it on the basis that starvation is highly unlikely
and not worth adding complexity to the implementation.

» Some algorithms provide other features or guarantees:

* E.g. “first-come, first-served”.

* Offer a “nacking” lock — instead of blocking, the lock function just
returns t rue to indicate the lock was granted, and false to indicate
that some other thread has/had the lock.

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 3/16



Peterson’s Mutual Exclusion Algorithm

1: % shared variables:

2: bool flag[2] = {false, false};

3: int victim = 0;

4:

5: lock (myId) {

6: int otherId = 1 - myId;$% know your neighbour
7 flag[myId] = true; % express intent to lock
8: victim = myId; % you go first, please
9: while (flag[otherId] && (victim == myId)); %
10: }
11:
12: unlock (myId) {
13: flag[myId] = false;
14: }

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm

CpSc 418 — Nov. 14, 2013

spin

4/16



The Peterson Principle

@ When a thread tries to acquire the lock, it gives priority to the other
thread before spinning.

@ If both threads try to acquire the lock at roughly the same time,
then the last one to set victim defers to the other thread.
@ Consider a few executions:
» Thread 0 acquires the lock without contention; then thread 1
requests the lock; then thread 0 releases the lock.
» Thread 0 sets its flag; thread 1 sets its flag; thread 0 proceeds to
spin; thread 1 proceeds to spin. Who gets the lock?
» Think of your own example.

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 5/16



Proving Peterson Correct: Thread “states”

@ Each thread cycles through the following four states in the order
below:

» |dle: Both threads are initially idle. Furthermore, they return to the
idle state at line 14 of unlock. The idle state include the
non-critical section code of the thread. The idle state continues to
line 7 of 1ock.

» Entering: Line 8 of 1ock.

» Spinning: Line 9 of 1ock.

» Critical: Starting at line 10 of 1ock, the critical section for the
thread, and continuing to line 13 of unlock.

@ I'll write state (threadId) to indicate the current “state” of the
given thread.

@ Note: when we say that a thread is at line L, that means that
execution has reached line L, but no actions for line L have been
performed.

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 6/16



Proving Peterson Correct: Mutual Exclusion — why?

@ Why does Peterson’s algorithm guarantee mutual exclusion?
» What does flag[id] tell us?
* Hint: think about the relation between f1ag[id], and state (id).
» What is the role of victim?

* What if one thread is spinning and the other is in its critical region?
* What if both threads are spinning?

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 7/16



Proving Peterson Correct: Mutual Exclusion — the
proof

@ Write the previous observations as an invariant:

@ Show that each operation of the algorithm preserves the invariant.
@ Show that the invariant guarantees mutual exclusion

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 8/16



Proving Peterson Correct: Deadlock Freedom — why

@ Both threads can proceed to the spin state without being blocked
by the other.
@ Need to show that if one or both threads are spinning, then
eventually, some thread enters its critical region.
@ Why must some thread eventually be in its critical region?
@ Assume thread 0 is spinning.

@ Think about what happens for the various states that thread 1 could
be in.

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 9/16



Peterson is Deadlock Free — the proof

Assume thread 0 is spinning:
@ case thread 1 is idle:

@ case thread 1 is entering:

@ case thread 1 is spinning:

@ case thread 1 is critical:

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 10/16



Proving Peterson Correct: No Starvation — why

@ If thread 0 is not idle, what is the longest sequence of state
transitions by threads 0 and 1 before thread 0 enters its critical
region?

@ Construct a function based on the states of threads 0 and 1 and
the value of victim that gives the maximum number of state
transitions remaining until thread 0 will enter its critical region.

@ Why must each step be taken?

@ Note 1: | would never ask you to prove starvation freedom on
anything for credit in this class.

@ Note 2: This is why tools like PReach are great: they automate all
of these proofs!

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 11/16



Mutual exclusion with more than two threads

@ Peterson’s algorithm generalizes to any number of threads.
@ The algorithm is called a “filter lock”.

@ One flag variable per thread,

@ and an array of N — 1 victim variables.

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 12/16



Mutual exclusion with more than two threads

@ Why so many variables:

» The Bakery algorithm also uses N shared variables for N-way
mutual exclusion.

» Can show that N — 1 variables are required to guarantee
mutual-exclusion if the only atomic operations are individual reads
and writes.

» This is why real processors have “compare-and-set” (or similar)
operations.

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 13/16



Some Performance Experiments (I hope)

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm



The rest of the course

@ Nov. 19: Mesh sorting, and distributed Erlang

@ Nov. 21: GPUs

@ Nov. 26: Map Reduce

@ Nov. 28: The future, or my research, or course review, or ...

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm CpSc 418 — Nov. 14, 2013 15/16



Review

Mark Greenstreet Peterson’s Mutual Exclusion Algorithm



