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Lecture Outline

This is a draft version of the slides.

Mutual Exclusion
Peterson’s algorithm
Proving Peterson’s algorithm correct
Mutual Exclusion in the real world.
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Mutual Exclusion: Usage

A mutual exclusion algorithm provides two operations:
I lock(threadId): the thread specified by threadId acquires the

lock.
I unlock(threadId): the thread specified by threadId releases

the lock.
Usage:

I Initially, no thread has the lock.
I If a thread does not have the lock, it may call lock(threadId).
I When lock(threadId) returns, the thread specified by
threadId has the lock.

I If a thread has the lock it must eventually call unlock(threadId).
I When unlock(threadId) returns, the thread specified by
threadId no longer has the lock.

I It is an error:
F To call lock(threadId) if the thread already has the lock.
F To call unlock(threadId) if the thread does not have the lock.
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Mutual Exclusion: Guarantees

A correct mutual exclusion algorithm guarantees:
I Mutual exclusion: at most one thread has the lock at any time.
I No Deadlock: if one or more threads have requested the lock, some

thread will eventually receive the lock.
I No Starvation: if a thread requests the lock, it will eventually acquire

it.
A few notes:

I Even if the mutual-exclusion algorithm is deadlock free, a program
may deadlock, e.g. cycles of locks.

I Freedom from starvation is nice, but there are practical algorithms
that don’t guarantee it on the basis that starvation is highly unlikely
and not worth adding complexity to the implementation.

I Some algorithms provide other features or guarantees:
F E.g. “first-come, first-served”.
F Offer a “nacking” lock – instead of blocking, the lock function just

returns true to indicate the lock was granted, and false to indicate
that some other thread has/had the lock.
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Peterson’s Mutual Exclusion Algorithm

1: % shared variables:
2: bool flag[2] = {false, false};
3: int victim = 0;
4:
5: lock(myId) {
6: int otherId = 1 - myId;% know your neighbour
7: flag[myId] = true; % express intent to lock
8: victim = myId; % you go first, please
9: while(flag[otherId] && (victim == myId)); % spin
10: }
11:
12: unlock(myId) {
13: flag[myId] = false;
14: }
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The Peterson Principle

When a thread tries to acquire the lock, it gives priority to the other
thread before spinning.
If both threads try to acquire the lock at roughly the same time,
then the last one to set victim defers to the other thread.
Consider a few executions:

I Thread 0 acquires the lock without contention; then thread 1
requests the lock; then thread 0 releases the lock.

I Thread 0 sets its flag; thread 1 sets its flag; thread 0 proceeds to
spin; thread 1 proceeds to spin. Who gets the lock?

I Think of your own example.
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Proving Peterson Correct: Thread “states”

Each thread cycles through the following four states in the order
below:

I Idle: Both threads are initially idle. Furthermore, they return to the
idle state at line 14 of unlock. The idle state include the
non-critical section code of the thread. The idle state continues to
line 7 of lock.

I Entering: Line 8 of lock.
I Spinning: Line 9 of lock.
I Critical: Starting at line 10 of lock, the critical section for the

thread, and continuing to line 13 of unlock.

I’ll write state(threadId) to indicate the current “state” of the
given thread.
Note: when we say that a thread is at line L, that means that
execution has reached line L, but no actions for line L have been
performed.
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Proving Peterson Correct: Mutual Exclusion – why?

Why does Peterson’s algorithm guarantee mutual exclusion?
I What does flag[id] tell us?

F Hint: think about the relation between flag[id], and state(id).
I What is the role of victim?

F What if one thread is spinning and the other is in its critical region?
F What if both threads are spinning?
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Proving Peterson Correct: Mutual Exclusion – the
proof

Write the previous observations as an invariant:
Show that each operation of the algorithm preserves the invariant.
Show that the invariant guarantees mutual exclusion
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Proving Peterson Correct: Deadlock Freedom – why

Both threads can proceed to the Spin state without being blocked
by the other.
Need to show that if one or both threads are spinning, then
eventually, some thread enters its critical region.
Why must some thread eventually be in its critical region?

1 Assume thread 0 is spinning.

2 Think about what happens for the various states that thread 1 could
be in.
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Peterson is Deadlock Free – the proof
Assume thread 0 is spinning:

case thread 1 is idle:

case thread 1 is entering:

case thread 1 is spinning:

case thread 1 is critical:
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Proving Peterson Correct: No Starvation – why

If thread 0 is not idle, what is the longest sequence of state
transitions by threads 0 and 1 before thread 0 enters its critical
region?
Construct a function based on the states of threads 0 and 1 and
the value of victim that gives the maximum number of state
transitions remaining until thread 0 will enter its critical region.
Why must each step be taken?
Note 1: I would never ask you to prove starvation freedom on
anything for credit in this class.
Note 2: This is why tools like PReach are great: they automate all
of these proofs!
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Mutual exclusion with more than two threads

Peterson’s algorithm generalizes to any number of threads.
The algorithm is called a “filter lock”.
One flag variable per thread,
and an array of N − 1 victim variables.
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Mutual exclusion with more than two threads

Why so many variables:
I The Bakery algorithm also uses N shared variables for N-way

mutual exclusion.
I Can show that N − 1 variables are required to guarantee

mutual-exclusion if the only atomic operations are individual reads
and writes.

I This is why real processors have “compare-and-set” (or similar)
operations.
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Some Performance Experiments (I hope)
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The rest of the course

Nov. 19: Mesh sorting, and distributed Erlang
Nov. 21: GPUs
Nov. 26: Map Reduce
Nov. 28: The future, or my research, or course review, or . . .
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Review
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