Bitonic Sorting, Part 2

Mark Greenstreet

CpSc 418 - Nov. 12, 2013

Lecture Outline

- Recap of Bitonic Sort
- The general version of the algorithm
- An implementation

The Midterm

midterm score histogram

- Will return at the end of class.
- $\min =54$, max=102, median=86, mean=83.43, std=12.54.
- High distribution with a somewhat long tail.
- Everyone passed. -
- Question 1 had unexpectedly low scores. $)^{(2}$
- Question 3 should have been more quantitative and challenging.

Monotonic Sequences

positive monotonic

negative monotonic

flat

neither

- Let $X_{0}, X_{1}, \ldots, X_{N-1}$ be a sequence.
- If $X_{0} \leq X_{1} \leq \cdots \leq X_{N-1}$, then we say that X is positive-monotonic.
- If $X_{0} \geq X_{1} \geq \cdots \geq X_{N-1}$, then we say that X is negative-monotonic.
- If $X_{0}=X_{1}=\cdots=X_{N-1}$, then we say that X is flat.
- We will say that X is monotonic to mean:
- X is positive-monotonic (the default meaning)
- X is either positive- or negative-monotonic - sometimes we might use this sense to avoid saying "positive- or negative-monotonic" over and over. If so, l'll make it clear that we are using this more general sense of monotonic.

Bitonic Sequences

bitonic

- Let $X_{0}, X_{1}, \ldots, X_{N-1}$ be a sequence.
- If there exists $/$ with $0 \leq I \leq N$ such that

$$
\begin{array}{r}
\left(\forall 0 \leq J<I . X_{J} \leq X_{J+1}\right) \wedge\left(\forall I \leq J<N . X_{J} \geq X+J+1\right) \\
\vee \quad\left(\forall 0 \leq J<I . X_{J} \geq X_{J+1}\right) \wedge\left(\forall I \leq J<N . X_{J} \leq X+J+1\right)
\end{array}
$$

Then we say that X is bitonic.

- When it matters, we'll call the first case "up-down" bitonic and the second case "down-up" bitonic.

Properties of Bitonic Sequences

- Every monotonic sequence is bitonic - just choose $I=0$ or $I=N$.
- Every flat sequence is monotonic and thus bitonic.
- If X is a bitonic sequence of length N and
$0 \leq I_{0} \leq I_{1} \leq \cdots \leq I_{M-1}<N$, then $X_{I_{0}}, X_{I_{1}}, \ldots X_{I_{M-1}}$ is bitonic. In other words, every subsequence of a bitonic sequence is bitonic.
- X is positive-monotonic (the default meaning)
- X is either positive- or negative-monotonic - sometimes we might use this sense to avoid saying "positive- or negative-monotonic" over and over. If so, l'll make it clear that we are using this more general sense of monotonic.

Bitonic Merge

- Assume in[0]...in [$N-1$] is bitonic.
- wlog, assume in is an array of 0 s and 1 s .
- If in [0] ...in $\left[\frac{N}{2}-1\right]$ is flat- 0 :
- then out [0] \ldots out [$\frac{N}{2}-1$] is flat- 0 ;
- out $\left[\frac{N}{2} \cdots(N-1)\right]$ is the same as $\operatorname{in}\left[\frac{N}{2} \cdots(N-1)\right]$ and is therefore bitonic;
- for every $0 \leq i_{1}<\frac{N}{2}$ and every $\frac{N}{2} \leq i_{2}<N$, out $\left[i_{1}\right] \leq$ out $\left[i_{2}\right]$.
- If in $[0] \ldots$ in $\left[\frac{N}{2}-1\right]$ is flat-1:
- then out $\left[\frac{N}{2}\right] \ldots$ out $[N-1]$ is flat- 1 ;
- out [0] ...out [$\left.\frac{N}{2}-1\right]$ is the same as in $\left[\frac{N}{2} \cdots(N-1)\right]$ and is therefore bitonic;
- for every $0 \leq i_{1}<\frac{N}{2}$ and every $\frac{N}{2} \leq i_{2}<N$, out $\left[i_{1}\right] \leq$ out $\left[i_{2}\right]$.

Bitonic Merge (continued)

- If in $\left[0 \cdots \frac{N}{2}-1\right]$ is monotonic but not flat:
- then in $\left[\frac{N}{2} \cdots N-1\right]$ must be montonic in the other direction (possibly flat);
- at least one of out [$0 \cdots \frac{N}{2}-1$] or out [$\left.\frac{N}{2} \cdots N-1\right]$ must be clean - same argument as for Shear sort;
- for every $0 \leq i_{1}<\frac{N}{2}$ and every $\frac{N}{2} \leq i_{2}<N$, out $\left[i_{1}\right] \leq$ out $\left[i_{2}\right]$.
- If in $\left[0 \cdots \frac{N}{2}-1\right]$ is bitonic but not monotonic:
- then in $\left[\frac{N}{2} \cdots N-1\right]$ must be flat;
- either out [$0 \cdots \frac{N}{2}-1$] or out [$\left.\frac{N}{2} \cdots N-1\right]$ is flat,
- and the other is bitonic;
- for every $0 \leq i_{1}<\frac{N}{2}$ and every $\frac{N}{2} \leq i_{2}<N$, out [$\left.i_{1}\right] \leq$ out $\left[i_{2}\right]$.
- In all cases:
- either out [$0 \cdots \frac{N}{2}-1$] or out [$\frac{N}{2} \cdots N-1$] is flat,
- and the other is bitonic;
- for every $0 \leq i_{1}<\frac{N}{2}$ and every $\frac{N}{2} \leq i_{2}<N$, out $\left[i_{1}\right] \leq$ out $\left[i_{2}\right]$.

Bitonic Merge (continued)

- Each phase of the merge requires:
- Inputs to the merger (dashed box) must be bitonic.
- Each phase of the merge ensures:
- All values in upper half greater than or equal to all outputs in lower half.
- Both halves are bitonic.
- If the input to the whole merger is bitonic, then, the output is monotonic.

Bitonic Sort

- We can merge, but can we sort?
- Arrays of one element are already sorted.
- We can merge two one-element arrays with a single compare-and swap.
- Given arrays of length N sorted in opposite directions
\star concatenate them to make a bitonic array of length $2 N$.
* perform a bitonic merge to obtain a sorted array of length $2 N$.
- In Erlang:

Bitonic Sort

- Sorting can be done using bitonic merges of width $2,4, \ldots N$.
- A merge of width k has depth $\log _{2} k$ and uses $\frac{k}{2} \log _{2} k$ compare-and-swap modules.
- When sorting N items, we use N / k merges of width k in parallel for a step that requires width- k merging.
\therefore bitonic sort has depth $\binom{\log _{2} N}{2}$ and uses $\frac{N}{2}\binom{\log _{2} N}{2}$ comparators.
- That's $O\left(\log _{2}^{2} N\right)$ parallel time and $O\left(N \log _{2}^{2} N\right)$ comparisons.

When N is odd

Bandwidth Considerations

The rest of the course

Build on what we've covered to make it solid. Here are the topics that I have planned. I'm also happy to cover past homework problems in detail or the midterm. I can do some stuff on the current homework, and describe solutions in detail after the due date. What's the due date?

- Nov. 14: Mutual Exclusion
- Nov. 19: Mesh sorting, and distributed Erlang
- Nov. 21: MPI or Map-Reduce
- Nov. 26: GPUs
- Nov. 28: The future, or my research, or course review, or ...

Review

- Let A and B be positive monotonic sequences of the same length. Show that

$$
[\max (X, Y)|\mid\{X, Y\}<-\operatorname{zip}(A, B)]
$$

is positive monotonic.

- Let A be a positive monotonic sequence and B be a negative monotonic sequence of the same length as A. Show that

$$
[\max (X, Y)|\mid\{X, Y\}<-\operatorname{zip}(A, B)]
$$

is bitonic.

