Bitonic Sorting, Part 2

Mark Greenstreet

CpSc 418 - Nov. 12, 2013

Mark Greenstreet

Bitonic Sorting, Part 2

CpSc 418 - Nov. 12, 2013 0 / 10

Lecture Outline

- Recap of Bitonic Sort
- The general version of the algorithm
- An implementation

The Midterm

- Will return at the end of class.
- min=54, max=102, median=86, mean=83.43, std=12.54.
- High distribution with a somewhat long tail.
- Everyone passed. ©
- Question 1 had unexpectedly low scores. 😊
- Question 3 should have been more quantitative and challenging.

Monotonic Sequences

- Let $X_0, X_1, \ldots, X_{N-1}$ be a sequence.
- If $X_0 \leq X_1 \leq \cdots \leq X_{N-1}$, then we say that X is positive-monotonic.
- If X₀ ≥ X₁ ≥ · · · ≥ X_{N-1}, then we say that X is negative-monotonic.
- If $X_0 = X_1 = \cdots = X_{N-1}$, then we say that X is flat.
- We will say that X is monotonic to mean:
 - X is positive-monotonic (the default meaning)
 - X is either positive- or negative-monotonic sometimes we might use this sense to avoid saying "positive- or negative-monotonic" over and over. If so, I'll make it clear that we are using this more general sense of monotonic.

Bitonic Sequences

- Let $X_0, X_1, \ldots, X_{N-1}$ be a sequence.
- If there exists *I* with $0 \le I \le N$ such that

$$\begin{array}{ll} (\forall 0 \leq J < I. \; X_J \leq X_{J+1}) & \land & (\forall I \leq J < N. \; X_J \geq X+J+1) \\ \lor & (\forall 0 \leq J < I. \; X_J \geq X_{J+1}) & \land & (\forall I \leq J < N. \; X_J \leq X+J+1) \end{array}$$

Then we say that X is bitonic.

 When it matters, we'll call the first case "up-down" bitonic and the second case "down-up" bitonic.

Properties of Bitonic Sequences

- Every monotonic sequence is bitonic just choose I = 0 or I = N.
- Every flat sequence is monotonic and thus bitonic.
- If X is a bitonic sequence of length N and $0 \le I_0 \le I_1 \le \cdots \le I_{M-1} < N$, then $X_{I_0}, X_{I_1}, \ldots X_{I_{M-1}}$ is bitonic. In other words, every subsequence of a bitonic sequence is bitonic.
 - X is positive-monotonic (the default meaning)
 - X is either positive- or negative-monotonic sometimes we might use this sense to avoid saying "positive- or negative-monotonic" over and over. If so, I'll make it clear that we are using this more general sense of monotonic.

Bitonic Merge

- Assume $in[0] \dots in[N-1]$ is bitonic.
- $\bullet\,$ wlog, assume in is an array of 0s and 1s.
- If $in[0] \dots in[\frac{N}{2} 1]$ is flat-0:
 - then out $[0] \dots out [\frac{N}{2} 1]$ is flat-0;
 - out $\left[\frac{N}{2}\cdots(N-1)\right]$ is the same as $\ln\left[\frac{N}{2}\cdots(N-1)\right]$ and is therefore bitonic;
 - ▶ for every $0 \le i_1 < \frac{N}{2}$ and every $\frac{N}{2} \le i_2 < N$, out $[i_1] \le$ out $[i_2]$.
- If $in[0] \dots in[\frac{N}{2} 1]$ is flat-1:
 - then out $\left\lfloor \frac{N}{2} \right\rfloor$... out $\left\lfloor N 1 \right\rfloor$ is flat-1;
 - out $[0] \dots$ out $[\frac{N}{2} 1]$ is the same as $in [\frac{N}{2} \dots (N 1)]$ and is therefore bitonic;
 - ▶ for every $0 \le i_1 < \frac{N}{2}$ and every $\frac{N}{2} \le i_2 < N$, out $[i_1] \le$ out $[i_2]$.

Bitonic Merge (continued)

• If $in[0\cdots \frac{N}{2}-1]$ is monotonic but not flat:

- then $in \left[\frac{N}{2} \cdots N 1\right]$ must be montonic in the other direction (possibly flat);
- ▶ at least one of out $[0 \cdots \frac{N}{2} 1]$ or out $[\frac{N}{2} \cdots N 1]$ must be clean same argument as for Shear sort;
- for every $0 \le i_1 < \frac{N}{2}$ and every $\frac{N}{2} \le i_2 < N$, $\operatorname{out}[i_1] \le \operatorname{out}[i_2]$.
- If $in[0\cdots\frac{N}{2}-1]$ is bitonic but not monotonic:
 - then $in \left[\frac{N}{2} \cdots N 1\right]$ must be flat;
 - either out $[0 \cdots \frac{N}{2} 1]$ or out $[\frac{N}{2} \cdots N 1]$ is flat,
 - and the other is bitonic;
 - for every $0 \le i_1 < \frac{N}{2}$ and every $\frac{N}{2} \le i_2 < N$, $\operatorname{out}[i_1] \le \operatorname{out}[i_2]$.

In all cases:

- either out $[0 \cdots \frac{N}{2} 1]$ or out $[\frac{N}{2} \cdots N 1]$ is flat,
- and the other is bitonic;
- for every $0 \le i_1 < \frac{N}{2}$ and every $\frac{N}{2} \le i_2 < N$, $\operatorname{out}[i_1] \le \operatorname{out}[i_2]$.

Bitonic Merge (continued)

- Each phase of the merge requires:
 - Inputs to the merger (dashed box) must be bitonic.
- Each phase of the merge ensures:
 - All values in upper half greater than or equal to all outputs in lower half.
 - Both halves are bitonic.

• If the input to the whole merger is bitonic, then, the output is monotonic.

Bitonic Sort

- We can merge, but can we sort?
 - Arrays of one element are already sorted.
 - We can merge two one-element arrays with a single compare-and swap.
 - Given arrays of length N sorted in opposite directions
 - ★ concatenate them to make a bitonic array of length 2N.
 - ★ perform a bitonic merge to obtain a sorted array of length 2*N*.
- In Erlang:

Bitonic Sort

• Sorting can be done using bitonic merges of width 2, 4, ... N.

- A merge of width k has depth log₂k and uses ^k/₂ log₂k compare-and-swap modules.
- ► When sorting N items, we use N/k merges of width k in parallel for a step that requires width-k merging.
- ► : bitonic sort has depth $\begin{pmatrix} \log_2 N \\ 2 \end{pmatrix}$ and uses $\frac{N}{2} \begin{pmatrix} \log_2 N \\ 2 \end{pmatrix}$ comparators.
- That's $O(log_2^2 N)$ parallel time and $O(N \log_2^2 N)$ comparisons.

When N is odd

Bandwidth Considerations

The rest of the course

Build on what we've covered to make it solid.

Here are the topics that I have planned. I'm also happy to cover past homework problems in detail or the midterm. I can do some stuff on the current homework, and describe solutions in detail after the due date. What's the due date?

- Nov. 14: Mutual Exclusion
- Nov. 19: Mesh sorting, and distributed Erlang
- Nov. 21: MPI or Map-Reduce
- Nov. 26: GPUs
- Nov. 28: The future, or my research, or course review, or ...

Review

• Let *A* and *B* be positive monotonic sequences of the same length. Show that

 $[\max(X, Y) | | {X, Y} <- zip(A, B)]$

is positive monotonic.

• Let *A* be a positive monotonic sequence and *B* be a negative monotonic sequence of the same length as *A*. Show that

 $[\max(X, Y) \mid \mid \{X, Y\} <- \operatorname{zip}(A, B)]$

is bitonic.