
POSIX Threads

Mark Greenstreet

CpSc 418 – Oct. 31, 2013

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 1 / 24

Lecture Outline

POSIX Threads
Count 3’s

I Creating threads
I Joining threads

Communication between Threads
I Shared Memory
I Locks
I Signals

Correctness of shared memory programs

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 2 / 24

POSIX Threads

POSIX threads: a library for writing parallel programs in C for
shared-memory, multiprocessors (under Unix).
Provides functions for thread creation and termination.
Provides functions for locking (mutual exclusion).
Provides functions for signaling between threads.

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 3 / 24

Count 3’s: Design

Given A an array of n integers.
Let t be the intended number of worker threads.
Create t threads

I Each thread counts the number of 3’s in a sub-array of roughly n/t
elements.

I Each thread writes its count into a separate element of a results
array and then terminates.

The main thread waits for each worker thread to terminate and
adds up their values to get the total number of 3’s in A.

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 4 / 24

Creating a POSIX thread
pthread create(threadId, threadAttr, thread fn, thread arg)

threadId: a pointer to a pthread t, a thread identifier;
threadAttr: attributes for the thread – set it to NULL to get the
defaults;
threadFn: call this function to start execution of the thread;
threadArg: the parameter to pass to threadFn.
Corresponds to Erlang spawn(Fun, ArgList):

I pthread thread create corresponds to spawn.
I thread fn corresponds to Fun.
I thread arg corresponds to ArgList.
I threadId corresponds to the return value of spawn.

F Why?
F Because this is C:

no explicit exceptions
return value used to report errors

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 5 / 24

A thread for counting 3’s

typedef struct {
int *a, lo, hi; // count 3’s for a[lo..(hi-1)]
int *count; // put the local count here

} c3s arg;

// c3s thread: count the number of threes in a[lo..(hi-1)]
void *c3s thread(void *void arg) {

c3s arg *arg = (c3s arg *)(void arg);
int *a = arg->a; // copy arg’s fields to local variables
int lo = arg->lo;
int hi = arg->hi;
int count = 0;
for(int i = lo; i < hi; i++) // count

count += a[i] == 3;

*(arg->count) = count; // save our result
return(NULL); // that’s it

}

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 6 / 24

Creating Threads: Example

// allocate arrays for thread IDs and per-thread counts
pthread t *threadId =
(pthread t *)(malloc(t*sizeof(pthread t)));

int *counts = (int *)(malloc(t*sizeof(int)));
int oldHi = 0;

// start threads: give each n/t values of a to work on
for(int i = 0; i < t; i++) {
c3s arg *arg = (c3s arg *)(malloc(sizeof(c3s arg)));
arg->a = a; arg->lo = oldHi;
arg->hi = (((long long int)(n))*(i+1))/t;
arg->count = &(counts[i]);
if(pthread create(&threadId[i], NULL, c3s thread, arg) != 0) {

perror("count 3’s: ");
exit(-1);

}
oldHi = arg->hi;

}

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 7 / 24

Reaping Threads

The parent thread calls: pthread join(threadId, void **status)
I threadId: a pointer to a pthread t.

Thread join waits until the thread corresponding to threadId exits.
I status: The exiting thread can pass a pointer back to it’s parent with

this. If status == NULL, then the exit value is ignored.
The child thread calls: pthread exit(void *status)

I Another way to exit is the thread’s top-level function can return.
I haven’t found any documnetion for what *status gets set to in this
case.

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 8 / 24

Reaping Threads: Example

// wait for all threads to finish
for(int i = 0; i < t; i++) {
if(pthread join(threadId[i], NULL) != 0) {

perror("count 3’s: ");
exit(-2);

}
n3s += counts[i];

}
return(n3s);

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 9 / 24

Count 3’s: runtime

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

threads

Ti
m

e

Count 3’s execution times

Niagra T2
Core 2 Duo
Dual Quad Core Xeon

CPU # cores min. time
SUN Niagra T2 8 cores 0.0601 (64 threads)
Intel Core 2 Duo 2 cores 0.2195s (47 threads)
Intel Xeon 8 cores 0.0315s (23 threads)

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 10 / 24

Communication and Synchronization

Shared Memory
Mutexes
Condition Variables
Barriers

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 11 / 24

Pthreads provides a higher-level API
Threads communicate using shared memory.
Mutual exclusion objects, condition variables, and barriers provide
synchronization between threads.
Pthreads functions also perform the necessary memory fences to
make sure that the data is consistent between threads.

I For changes by thread 1 to be guaranteed to be visible to thread 2:
both threads must perform a pthreads synchronization action
between the writes by thread 1 and the reads by thread 2.

In other words:
I All pthreads synchronization operations are ordered according to

their logical dependencies:
I Within a thread, the thread’s actions and its pthreads calls are

ordered as expected.
I Example:

F If thread 1 unlocks a mutex that then allows thread 2 to continue
execution,

F Then all operations performed by thread 1 before the unlock are
visible to operations performed by thread 2 after it acquires the lock.

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 12 / 24

Producer-Consumer

Problem statement:
I The producer generates a sequence of data values: v1, v2,
I The consumer reads this sequence from the producer.
I If the consumer is ready to read a value and none is available from

the producer, then the consumer stalls until the a data value is
available.

I Likewise, we can implement this interface with a fixed-capacity
buffer.

F In this case, if the producer generates a value and there is no empty
space available in the buffer, the producer stalls until the value can be
written to the buffer.

We’ll look at an implementation using a shared, fixed-sized array
as a buffer.

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 13 / 24

Producer-Consumer: try 1
Value buffer[n]; // shared buffer
int wptr, rptr; // indices for current write and read positions

int next(int i) { // cyclic successor of i
return((i+1) % n);

}
void put(Value v) { // called by producer

if(next(wptr) != rptr) {
buffer[wptr] = v;
wptr = next(wptr);

} else ???
}
Value take() { // called by consumer

if(rptr != wptr) {
Value v = buffer[rptr];
rptr = next(rptr);
return(v);

} else ???
}

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 14 / 24

Producer-Consumer: try 2

void put(Value v) { // called by producer
while(next(wptr) == rptr); // wait for empty space
buffer[wptr] = v;
wptr = next(wptr);

}
Value take() { // called by consumer

while(rptr == wptr); // wait for data to arrive
Value v = buffer[rptr];
rptr = next(rptr);
return(v);

}

What’s wrong with this solution?

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 15 / 24

Condition Variables (try cond-1)

wait(cond); this thread waits until a signal is sent to cond.
signal(cond); this thread sends a signal to cond.

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 16 / 24

Producer-Consumer: try 3
Cond w cond, r cond; // condition variables

void put(Value v) { // called by producer
int oldwptr = wptr;
if(next(wptr) == rptr)

wait(w cond);
buffer[wptr] = v;
wptr = next(wptr);
if(oldwptr == rptr)

signal(r cond);
}
Value take() { // called by consumer

int oldrptr = rptr;
if(rptr == wptr)

wait(r cond);
Value v = buffer[rptr];
rptr = next(rptr);
if(next(wptr) == oldrptr)

signal(w cond);
return(v);

}

What’s wrong with this solution?Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 17 / 24

Mutex Variables

lock(mutex); this thread acquires a lock on mutex.
I Only one thread can have the lock at a time.
I If a thread θi attempts to lock a mutex that thread θj has already

locked, then thread θi will block.
unlock(mutex); this thread releases its lock on mutex.

I If one or more threads are blocked trying to lock the mutex, then
one of them will acquire the lock.

I If multiple threads are waiting for the mutex, an arbitrary one gets it.
I There is no promise or intent of first-come-first-served awarding of

the mutex to waiting threads.

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 18 / 24

Producer-Consumer: try 4
Mutex m; // a mutex variable
void put(Value v) { // called by producer
int oldwptr = wptr;
lock(m);
if(next(wptr) == rptr)

wait(w cond);
buffer[wptr] = v;
wptr = next(wptr);
if(oldwptr == rptr)

signal(r cond);
unlock(m);

}
Value take() { // called by consumer

int oldrptr = rptr;
lock(m);
if(rptr == wptr)

wait(r cond);
Value v = buffer[rptr];
rptr = next(rptr);
if(next(wptr) == oldrptr)

signal(w cond);
unlock(m);
return(v);

}

What’s wrong with this solution?
Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 19 / 24

Condition variables and mutexes

We need a mutex with each condition variable
I Otherwise, we can’t safely check the wait condition.

If the thread needs to wait, then the mutex needs to be unlocked
after the thread is waiting for the signal.

I But, if the thread is waiting for a signal, then it’s blocked,
I . . . and it can’t do anything.
I In particular, it can’t unlock the mutex.

Solution: the wait function handles the mutex lock:
I When the thread is suspended, wait unlocks the mutex.
I When the thread is resumed, wait relocks the mutex.

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 20 / 24

Producer-Consumer: final solution
void put(Value v) { // called by producer

int oldwptr = wptr;
lock(m);
if(next(wptr) == rptr)

wait(w cond, m);
buffer[wptr] = v;
wptr = next(wptr);
if(oldwptr == rptr)

signal(r cond);
unlock(m);

}
Value take() { // called by consumer

int oldrptr = rptr;
lock(m);
if(rptr == wptr)

wait(r cond, m);
Value v = buffer[rptr];
rptr = next(rptr);
if(next(wptr) == oldrptr)

signal(w cond);
unlock(m);
return(v);

} We could unlock the mutex while updating buffer, rptr, and wptr. Should we?

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 21 / 24

Mutexes

The mutex type: pthread mutex t

declare and initialize a mutex:
pthread mutex t my mutex;
pthread mutex init(&my mutex, NULL);

using a mutex:
I pthread mutex lock(&my mutex);
I pthread mutex unlock(&my mutex);
I pthread mutex trylock(&my mutex);
I pthread mutex destroy(&my mutex);

usage:
I Typically, a mutex is associated with a shared data structure.
I A thread acquires the mutex before accessing the data structure.

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 22 / 24

Condition Variables

The condition variable type: pthread cond t

declare and initialize a condition variable:
pthread cond t my cond;
pthread cond init(&my cond, NULL);

using a condition:
I pthread cond wait(&my cond);
I pthread cond signal(&my cond);
I pthread cond broadcast(&my cond);
I pthread cond destroy(&my cond);

condition variables and locks:
I Each condition variable should have an associated mutex.
I A thread must acquire the mutex before invoking
pthread cond wait, pthread cond signal, or
pthread cond broadcast.

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 23 / 24

For more information

POSIX threads
I Lin & Snyder, chapter 6.
I https://computing.llnl.gov/tutorials/pthreads

Upcoming Lectures
I Nov. 5: Bitonic Sorting (part 1)
I Nov. 7: Bitonic Sorting (part 2)
I Nov. 12, 14: GPUs, examples of parallel programs
I Nov. 19: MPI (Read Lin & Snyder chapter 7).

Mark Greenstreet POSIX Threads CpSc 418 – Oct. 31, 2013 24 / 24

https://computing.llnl.gov/tutorials/pthreads

