
PReach: A real-world, parallel program in Erlang

Brad Bingham
binghamb@cs.ubc.ca

University of British Columbia, Canada

October 24, 2013

CPSC 418

Outline

0 Background: Explicit-State Model Checking

1 Stern-Dill Algorithm: Distributed BFS
+ Other Tools

2 The PReach Model Checker

3 Remarks

4 Erlang Tips + Tricks

B. Bingham (UBC) Erlang/PReach October 24/2013 2 / 34

Terminology (Stolen from wikipedia)

Kripke Structure (“system”): A 4-tuple (S , I ,R, L) where

S is a (finite) set of states,

I ⊆ S are the initial states,

R ⊆ S × S is the transition relation,

L : S → 2AP is the labelling function – where AP is a set of atomic
propositions (boolean variables)

Reachable states: The set of all states s ∈ S for which there is a path
from some sinit ∈ I through R to s

B. Bingham (UBC) Erlang/PReach October 24/2013 3 / 34

Example: (also stolen from wikipedia)

AP = {p, q}
S = {a, b, c , d}
I = {a}
R = {(a, b), (b, a), (b, c), (c , c), (d , c)}
L = {(a, {p, q}), (b, {q}), (c , {p}), (d , {})}
Reachable = {a, b, c}
Bad ≡ ¬p ∧ ¬q

I

{p,q}
a

{ }
d

{q}
b

{p}
c

B. Bingham (UBC) Erlang/PReach October 24/2013 4 / 34

More Terminology

Model Checking (MC): An automatic technique for checking if a
system adheres to a specification, given by a formula expressed in
some logic (e.g. CTL, LTL, CTL*, etc)

The simplest specification is safety, i.e. “is there a reachable Bad
state?”
Bad is a predicate over AP

Explicit-State Model Checking: A model checking algorithm that
represents each reachable state distinctly in memory

A brute-force approach to MC
Alternative to explicit-state MC is symbolic MC, where sets of states
are represented by a formula over AP, (i.e., BDDs, Interpolants, IC3).

B. Bingham (UBC) Erlang/PReach October 24/2013 5 / 34

Murϕ

A language for describing hardware systems and an associated
explicit-state model checker (for safety properties)

Murϕ system has 4 parts:
1 variables (think booleans or enumerated types, describing AP),
2 initial states (a predicate over the variables describing I),
3 guarded commands (of the form g ⇒ a, where g is a “guard” and a is

an update action, describing R).
4 invariants (a predicate for Bad states).

Model checking a Murϕ system has 3 possible outcomes: pass, fail
with counter example, or run out of memory

B. Bingham (UBC) Erlang/PReach October 24/2013 6 / 34

Explicit-state MC by BFS

Set of visited states V = ∅
Queue of expanded states WQ = []

init

h

b

a

d

c e
g

f

B. Bingham (UBC) Erlang/PReach October 24/2013 7 / 34

Explicit-state MC by BFS

Set of visited states V = {a}
Queue of expanded states WQ = [a]

init

h

b

a

d

c e
g

f

B. Bingham (UBC) Erlang/PReach October 24/2013 7 / 34

Explicit-state MC by BFS

Set of visited states V = {a, b, c}
Queue of expanded states WQ = [b, c]

init

h

b

a

d

c e
g

f

B. Bingham (UBC) Erlang/PReach October 24/2013 7 / 34

Explicit-state MC by BFS

Set of visited states V = {a, b, c , d}
Queue of expanded states WQ = [c , d]

init

h

b

a

d

c e
g

f

B. Bingham (UBC) Erlang/PReach October 24/2013 7 / 34

Explicit-state MC by BFS

Set of visited states V = {a, b, c , d , e, f }
Queue of expanded states WQ = [d , e, f]

init

h

b

a

d

c e
g

f

B. Bingham (UBC) Erlang/PReach October 24/2013 7 / 34

Explicit-state MC by BFS

Set of visited states V = {a, b, c , d , e, f }
Queue of expanded states WQ = [e, f]

init

h

b

a

d

c e
g

f

B. Bingham (UBC) Erlang/PReach October 24/2013 7 / 34

Explicit-state MC by BFS

Set of visited states V = {a, b, c , d , e, f , g}
Queue of expanded states WQ = [f , g]

init

h

b

a

d

c e
g

f

B. Bingham (UBC) Erlang/PReach October 24/2013 7 / 34

Explicit-state MC by BFS

Set of visited states V = {a, b, c , d , e, f , g , h}
Queue of expanded states WQ = [g , h]

init

h

b

a

d

c e
g

f

B. Bingham (UBC) Erlang/PReach October 24/2013 7 / 34

Explicit-state MC by BFS

Set of visited states V = {a, b, c , d , e, f , g , h}
Queue of expanded states WQ = [h]

init

h

b

a

d

c e
g

f

B. Bingham (UBC) Erlang/PReach October 24/2013 7 / 34

Explicit-state MC by BFS

Set of visited states V = {a, b, c , d , e, f , g , h}
Queue of expanded states WQ = []

init

h

b

a

d

c e
g

f

B. Bingham (UBC) Erlang/PReach October 24/2013 7 / 34

State-space explosion

Bad news: The number of reachable states tends to blow up
exponentially in the number of variables, i.e |Reachable| ∝ 2|AP|.

In other words, adding just one more boolean variable to the system
can cause the number of states to DOUBLE! This means double the
memory and double the runtime for explicit-state MC of safety.

ALL methods of MC suffer from this problem.

Methods to curb: abstraction, symmetry reduction, partial order
reduction

Another method: distribute the MC computation among a network of
machines!

B. Bingham (UBC) Erlang/PReach October 24/2013 8 / 34

Why Distributed Explicit State Model Checking?

State-space explosion assures us that we can always use more memory
(and cycles)

Easily takes advantage of the aggregate memory of commodity
machines and multiple cores

Question: Who cares about increasing our MC capabilities by a
factor of [100, 1000] when we face an exponential explosion?

1 This factor can make the difference between verifying a very high
level model and one that includes critical details

2 Techniques of abstraction/decomposition require human effort –
terminate the human task sooner and hand it off to a large cluster

B. Bingham (UBC) Erlang/PReach October 24/2013 9 / 34

Outline

0 Background: Explicit-State Model Checking

1 Stern-Dill Algorithm: Distributed BFS
+ Other Tools

2 The PReach Model Checker

3 Remarks

4 Erlang Tips + Tricks

B. Bingham (UBC) Erlang/PReach October 24/2013 10 / 34

Stern-Dill Algorithm[SD97] Overview

Simple and fundamental approach to distributing explicit-state model
checking (for safety)

Assumes a uniform random hash function owner : States → PIDs
Thread PID i only stores states s such that owner(s) = i .

Each PID maintains two data structures:

V: Set of (owned) states visited so far
WQ: List of states waiting to be expanded

Start: compute initial states and send to their owners

Iterate: state sucessors are sent to their respective owners

Termination: when each WQ is empty and no messages are in flight

B. Bingham (UBC) Erlang/PReach October 24/2013 11 / 34

Stern-Dill Pseudocode

L
A

N
/N

oC
to

ot
h

er
W

O
R

K
E

R
S

state s

where owner(s) = i

WORKER THREAD i

(visited states)

V : {s1, ..., sk}

V : {s1, ..., sk} ∪ {s}

((((((((((
if s ∈ V → discard s

if s /∈ V → add s to V

compute s sucessors

s ′1, ..., s
′
r

s ′1, ..., s
′
r

owner(s ′1), ..., owner(s ′r)

B. Bingham (UBC) Erlang/PReach October 24/2013 12 / 34

Stern-Dill Pseudocode

L
A

N
/N

oC
to

ot
h

er
W

O
R

K
E

R
S

state s

where owner(s) = i

WORKER THREAD i

(visited states)

V : {s1, ..., sk}

V : {s1, ..., sk} ∪ {s}

((((((((((
if s ∈ V → discard s

if s /∈ V → add s to V

compute s sucessors

s ′1, ..., s
′
r

s ′1, ..., s
′
r

owner(s ′1), ..., owner(s ′r)

B. Bingham (UBC) Erlang/PReach October 24/2013 12 / 34

Stern-Dill Pseudocode

L
A

N
/N

oC
to

ot
h

er
W

O
R

K
E

R
S

state s

where owner(s) = i

WORKER THREAD i

(visited states)

V : {s1, ..., sk}

V : {s1, ..., sk} ∪ {s}

((((((((((
if s ∈ V → discard s

if s /∈ V → add s to V

compute s sucessors

s ′1, ..., s
′
r

s ′1, ..., s
′
r

owner(s ′1), ..., owner(s ′r)

B. Bingham (UBC) Erlang/PReach October 24/2013 12 / 34

Some Optimizations

“State Batching”: from [SD97], delay sending states to another
thread until enough states accumulate

Mitigates the overhead of network message passing
Important: appropriate proviso to avoid deadlock, i.e. always send
states eventually
Every DEMC tool does this in some form

“Less-Uniform Partitioning”: from parallel Spin [LS99]

States are composed of sets of variables (s1, s2, ..., sk) for k Promella
processes
Instead of owner depending on each si , let owner depend on only one si
If most transitions don’t change si ’s variables, state sucessors stay local
to the thread (no communication necessary)
However: may be less balanced than owner depending on all variables

B. Bingham (UBC) Erlang/PReach October 24/2013 13 / 34

Eddy (Murϕ)[MPS+09]

Parallel implementation of the Murϕ model
checker, from Univ. of Utah

Use MPI for distributed communication, split
one Stern-Dill thread into two p-threads

For each peer: maintain a communication
queue of 8 batches of 1024 states

Computation thread: expands states and writes
to comm. queues

Communication thread: wakes up when a
message arrives or a batch fills up

Overlaps message handling with state
expansion; good from a software engineering
perspective

B. Bingham (UBC) Erlang/PReach October 24/2013 14 / 34

Outline

0 Background: Explicit-State Model Checking

1 Stern-Dill Algorithm: Distributed BFS
+ Other Tools

2 The PReach Model Checker

3 Remarks

4 Erlang Tips + Tricks

B. Bingham (UBC) Erlang/PReach October 24/2013 15 / 34

What is PReach[BBdP+10]?

PReach (Parallel REACHability) is a distributed explicit-state model
checker (UBC and Intel)

Input: the Murϕ modeling language; checks state invariants

New: Murϕ syntax extended by PReach to support deadlock freedom
and transition invariants

Runs on a network of heterogenous machines including multicore

Communication is handled by Erlang, a distributed functional
language, while C++ libraries handle compute-intensive model
checking tasks

Emphasis on scalability – billions of states

Robustness
Simplicity
Performance? (a secondary concern)

B. Bingham (UBC) Erlang/PReach October 24/2013 16 / 34

Stern-Dill in PReach

WQ: list of states; stored on disk
V: set of states; Murϕ hash table in memory
while ¬terminated() {

if ¬empty(WQ) {
s := dequeue(WQ);
foreach r in successors(s) {

owner(r) ! r ; }} # send successor state r
if receive(s) {

if ¬is member(s,V) {
add element(s,V);
check invariants(s);
enqueue(s,WQ);

}}}

B. Bingham (UBC) Erlang/PReach October 24/2013 17 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?

Ideas?

1 Each thread keeps two counters, NumSent and NumRecd
NumSent++ when sending a state; NumRecd++ when a state is
received

2 When my WQ has been empty for some threshold amount of time,
send message im idle to root

3 When root receives im idle, broadcast request stats to all workers
4 When a worker receives request stats, HALT computation and report:

If my WQ is nonempty: send im not done to root
If my WQ is empty: send {my stats,NumSent,NumRecd} to the root

5 Root decides if we’re really done:
If root receives my stats messages from all workers AND∑

NumSent i =
∑

NumRecd i , broadcast terminated
Otherwise: broadcast resume message

B. Bingham (UBC) Erlang/PReach October 24/2013 18 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

1 Each thread keeps two counters, NumSent and NumRecd
NumSent++ when sending a state; NumRecd++ when a state is
received

2 When my WQ has been empty for some threshold amount of time,
send message im idle to root

3 When root receives im idle, broadcast request stats to all workers
4 When a worker receives request stats, HALT computation and report:

If my WQ is nonempty: send im not done to root
If my WQ is empty: send {my stats,NumSent,NumRecd} to the root

5 Root decides if we’re really done:
If root receives my stats messages from all workers AND∑

NumSent i =
∑

NumRecd i , broadcast terminated
Otherwise: broadcast resume message

B. Bingham (UBC) Erlang/PReach October 24/2013 18 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

1 Each thread keeps two counters, NumSent and NumRecd
NumSent++ when sending a state; NumRecd++ when a state is
received

2 When my WQ has been empty for some threshold amount of time,
send message im idle to root

3 When root receives im idle, broadcast request stats to all workers
4 When a worker receives request stats, HALT computation and report:

If my WQ is nonempty: send im not done to root
If my WQ is empty: send {my stats,NumSent,NumRecd} to the root

5 Root decides if we’re really done:
If root receives my stats messages from all workers AND∑

NumSent i =
∑

NumRecd i , broadcast terminated
Otherwise: broadcast resume message

B. Bingham (UBC) Erlang/PReach October 24/2013 18 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

1 Each thread keeps two counters, NumSent and NumRecd
NumSent++ when sending a state; NumRecd++ when a state is
received

2 When my WQ has been empty for some threshold amount of time,
send message im idle to root

3 When root receives im idle, broadcast request stats to all workers
4 When a worker receives request stats, HALT computation and report:

If my WQ is nonempty: send im not done to root
If my WQ is empty: send {my stats,NumSent,NumRecd} to the root

5 Root decides if we’re really done:
If root receives my stats messages from all workers AND∑

NumSent i =
∑

NumRecd i , broadcast terminated
Otherwise: broadcast resume message

B. Bingham (UBC) Erlang/PReach October 24/2013 18 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

1 Each thread keeps two counters, NumSent and NumRecd
NumSent++ when sending a state; NumRecd++ when a state is
received

2 When my WQ has been empty for some threshold amount of time,
send message im idle to root

3 When root receives im idle, broadcast request stats to all workers

4 When a worker receives request stats, HALT computation and report:

If my WQ is nonempty: send im not done to root
If my WQ is empty: send {my stats,NumSent,NumRecd} to the root

5 Root decides if we’re really done:
If root receives my stats messages from all workers AND∑

NumSent i =
∑

NumRecd i , broadcast terminated
Otherwise: broadcast resume message

B. Bingham (UBC) Erlang/PReach October 24/2013 18 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

1 Each thread keeps two counters, NumSent and NumRecd
NumSent++ when sending a state; NumRecd++ when a state is
received

2 When my WQ has been empty for some threshold amount of time,
send message im idle to root

3 When root receives im idle, broadcast request stats to all workers
4 When a worker receives request stats, HALT computation and report:

If my WQ is nonempty: send im not done to root
If my WQ is empty: send {my stats,NumSent,NumRecd} to the root

5 Root decides if we’re really done:
If root receives my stats messages from all workers AND∑

NumSent i =
∑

NumRecd i , broadcast terminated
Otherwise: broadcast resume message

B. Bingham (UBC) Erlang/PReach October 24/2013 18 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

1 Each thread keeps two counters, NumSent and NumRecd
NumSent++ when sending a state; NumRecd++ when a state is
received

2 When my WQ has been empty for some threshold amount of time,
send message im idle to root

3 When root receives im idle, broadcast request stats to all workers
4 When a worker receives request stats, HALT computation and report:

If my WQ is nonempty: send im not done to root
If my WQ is empty: send {my stats,NumSent,NumRecd} to the root

5 Root decides if we’re really done:
If root receives my stats messages from all workers AND∑

NumSent i =
∑

NumRecd i , broadcast terminated
Otherwise: broadcast resume message

B. Bingham (UBC) Erlang/PReach October 24/2013 18 / 34

Architecture

Murϕ + tweaks + Erlang = PReach

B. Bingham (UBC) Erlang/PReach October 24/2013 19 / 34

Load Balancing

Bad News: While state space is partitioned evenly, dynamic load (WQ
length) can vary a lot

Some threads will finish early and idle

Heterogenous computing environment exacerbates the problem

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 200 400 600 800 1000 1200

W
o
rk

 Q
u
e
u
e
 S

ta
te

s

Seconds

Good News: We can effectively balance load without altering the static
state space partition

B. Bingham (UBC) Erlang/PReach October 24/2013 20 / 34

Stern-Dill in PReach

WQ: list of states;
V: set of states;
while ¬terminated() {

if ¬empty(WQ) {
s := dequeue(WQ);
foreach r in successors(s) {

owner(r) ! r ; }}
if receive(s) {

if ¬is member(s,V) {
add element(s,V);
check invariants(s);
enqueue(s,WQ);

}}}

Insight: After s is added to
V, it doesn’t matter which
thread computes the
sucessors of s!

B. Bingham (UBC) Erlang/PReach October 24/2013 21 / 34

Load Balancing Enabled

B. Bingham (UBC) Erlang/PReach October 24/2013 22 / 34

Results and Status

The “BIG Model”: Intel industrial cache coherence protocol.

≈ 95 billion states! ,
≈ 10 days runtime on 120 cores

≈ 110, 000 states/second; ≈ 900 states/second/core

Status:

Currently in use at Intel

Used by computer architects at Duke University, and a handful of
other people at various institutions

Available for download [BEBdP11]

B. Bingham (UBC) Erlang/PReach October 24/2013 23 / 34

Outline

0 Background: Explicit-State Model Checking

1 Stern-Dill Algorithm: Distributed BFS
+ Other Tools

2 The PReach Model Checker

3 Remarks

4 Erlang Tips + Tricks

B. Bingham (UBC) Erlang/PReach October 24/2013 24 / 34

Erlang Pros + Cons

Was Erlang a good choice to build an industrial, explicit-state model
checker?
Short answer is YES:

Erlang is easier to program than C/C++ with MPI – original
PReach prototype written in one weekend

A good choice for this project where parallel speedup is not
paramount, rather stability and scalability

Small codebase, ≈ 1000 lines.

I agree with these statements from
erlang.org/faq/how do i.html:

Lines of code: “A reasonably complex problem involving distribution
and fault tolerence will be roughly five times shorter in Erlang than in
C”
Performance: Number crunching is about 10 times slower in Erlang
than C; communication heavy programs are about the same speed.

B. Bingham (UBC) Erlang/PReach October 24/2013 25 / 34

Erlang Pros + Cons

Was Erlang a good choice to build an industrial, explicit-state model
checker?
Short answer is YES, however...

Documentation for Erlang isn’t great, and some of the more obscure
features aren’t explained well

The method of interfacing with C code (.so files) is miserable, and
the API seems to change with new Erlang versions /

We learned how to do this from some random blog
PReach uses ≈ 30 interface functions that call into Murϕ C code,
took some trial and error to learn how to pass various data types

B. Bingham (UBC) Erlang/PReach October 24/2013 26 / 34

A Few Directions

1 Bottlenecks: in PReach (+ other tools), the bottleneck is
state-expansion – especially bad in industrial models with ≈ 5000
guarded commands!

Several studies have considered GPU-accelerated model checking;
Recent work [BBBC10] is the first (that I’ve seen) to use more than
one GPU – although they only use 2, achieving a factor of 5 speedup

2 Crash Recovery: an important consideration when running hundreds
of machines for days

1 Snapshot V and WQ periodically: can recover from model checking
thread crashes

2 Duplicate state ownership: can recover from a machine going down

3 PReach has a modest number of parameters for load balancing,
batching, flow control

Use machine learning techniques [HHLBS09] to tune parameters
according to a new hardware configuration!

B. Bingham (UBC) Erlang/PReach October 24/2013 27 / 34

Outline

0 Background: Explicit-State Model Checking

1 Stern-Dill Algorithm: Distributed BFS
+ Other Tools

2 The PReach Model Checker

3 Remarks

4 Erlang Tips + Tricks

B. Bingham (UBC) Erlang/PReach October 24/2013 28 / 34

Profiling

There’s 4 profiling tools in Erlang: fprof, eprof, cover, cprof

My preference is eprof

Easy to use:

At the start of your program, insert the lines
eprof:start(),

eprof:start profiling([self()]),

At the end of your program, inser the lines
eprof:stop profiling(),
io:format("Here’s the eprof output:~n"),

eprof:analyze(),

Gives the number of times each function was called as well as the
total time spent in each function

Program slowdown is modest

B. Bingham (UBC) Erlang/PReach October 24/2013 29 / 34

The Process Dictionary

For when you REALLY want global variables...

Each process has it’s own “dictionary” that can be used to store
global variables

Set and get with put(Key,Value) and get(Key); delete with
delete(Key)

Really useful for debugging or gathering program statistics

B. Bingham (UBC) Erlang/PReach October 24/2013 30 / 34

Case vs. If

I slowly learned to always use case, and never use if

Suppose we want to implement a set with a list (i.e. only insert
elements that are new).

With case:
insert(X,Set) ->

case lists:member(X,Set) of true -> Set;

false -> [X | Set] end.

With if:
insert(X,Set) ->

IsInSet = lists:member(X,Set),

if IsInSet -> Set;

true -> [X | Set] end.

B. Bingham (UBC) Erlang/PReach October 24/2013 31 / 34

Beware Big Mailboxes

Warning: The time it takes to receive a message is proportional to
the number of messages waiting in the inbox!

Ignoring this issue in PReach causes crashes that arise from some
workers slowing down to a halt

As soon as one worker falls a little behind, it will never catch up
because it takes longer to receive states than the others

Solved with a crediting mechanism

Lesson: make sure your inboxes don’t blow up (say with stale
messages)

Inbox size can be checked with
{ , InboxSize} = process info(self(),message queue len)

B. Bingham (UBC) Erlang/PReach October 24/2013 32 / 34

Erlang Pointers

erlang.org has OK documentation, but I prefer

Tutorial Blog “Learn you some Erlang for great good!” by Frederic
Trottier-Hebert
learnyousomeerlang.com/content

Joe Armstrong’s Book, “Programming Erlang”

PReach source
https://bitbucket.org/jderick/preach

B. Bingham (UBC) Erlang/PReach October 24/2013 33 / 34

Contact

Brad Bingham
binghamb@cs.ubc.ca

Thank-you!

B. Bingham (UBC) Erlang/PReach October 24/2013 34 / 34

Contact

Brad Bingham
binghamb@cs.ubc.ca

Thank-you!

B. Bingham (UBC) Erlang/PReach October 24/2013 34 / 34

References I

J. Barnat, P. Bauch, L. Brim, and M. Ceska, Employing multiple cuda
devices to accelerate ltl model checking, Parallel and Distributed
Systems (ICPADS), 2010 IEEE 16th International Conference on,
2010, pp. 259–266.

B. Bingham, J. Bingham, F. M. de Paula, J. Erickson, G. Singh, and
M. Reitblatt, Industrial strength distributed explicit state model
checking, Parallel and Distributed Model Checking, 2010.

Jesse Bingham, John Erickson, Brad Bingham, and Flavio M.
de Paula, Open-source PReach,
http://bitbucket.org/jderick/preach, 2011.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas
Stützle, ParamILS: an automatic algorithm configuration framework,
Journal of Artificial Intelligence Research 36 (2009), 267–306.

B. Bingham (UBC) Erlang/PReach October 24/2013 35 / 34

http://bitbucket.org/jderick/preach

References II

F. Lerda and R. Sisto, Distributed-memory model checking with SPIN,
Proc. of SPIN 1999, volume 1680 of LNCS., Springer-Verlag, 1999,
pp. 22–39.

I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and
G. Gopalakrishnan, Parallel and distributed model checking in eddy,
Int. J. Softw. Tools Technol. Transf. 11 (2009), no. 1, 13–25.

U. Stern and D. L. Dill, Parallelizing the murphi verifier, International
Conference on Computer Aided Verification, 1997, pp. 256–278.

B. Bingham (UBC) Erlang/PReach October 24/2013 36 / 34

	Background: Explicit-State Model Checking
	Stern-Dill Algorithm: Distributed BFS
	+ Other Tools

	The PReach Model Checker
	Remarks
	Erlang Tips + Tricks
	Appendix

