PREAcCH: A real-world, parallel program in Erlang

Brad Bingham
binghamb®@cs.ubc.ca

University of British Columbia, Canada

October 24, 2013

CPSC 418

© Background: Explicit-State Model Checking

@ Stern-Dill Algorithm: Distributed BFS
@ + Other Tools

© The PREACH Model Checker
© Remarks

e Erlang Tips + Tricks

B. Bingham (UBC) Erlang/PREACH October 24/2013 2 /34

Terminology (Stolen from wikipedia)

Kripke Structure (“system”): A 4-tuple (S, /, R, L) where
S is a (finite) set of states,
| C S are the initial states,

o
@ R C S x S is the transition relation,
o

L : S — 24P is the labelling function — where AP is a set of atomic
propositions (boolean variables)

Reachable states: The set of all states s € S for which there is a path
from some s;,;; € | through R to s

B. Bingham (UBC) /P o October 24/2013 3 /34

Example: (also stolen from wikipedia)

o AP ={p,q}

e S={a,b,c,d}

o | ={a}

o R={(a b),(b,a),(b,c),(c,c),(d;c)}

o L={(a,{p,q}),(b,{a}),(c,{p}).(d, {1}
@ Reachable = {a, b, c}

@ Bad =—-pA—q

Erlang/PREACH October 24/2013 4 /34

More Terminology

e Model Checking (MC): An automatic technique for checking if a
system adheres to a specification, given by a formula expressed in
some logic (e.g. CTL, LTL, CTL*, etc)

o The simplest specification is safety, i.e. “is there a reachable Bad
state?”
e Bad is a predicate over AP
@ Explicit-State Model Checking: A model checking algorithm that
represents each reachable state distinctly in memory
o A brute-force approach to MC
o Alternative to explicit-state MC is symbolic MC, where sets of states
are represented by a formula over AP, (i.e., BDDs, Interpolants, 1C3).

B. Bingham (UBC) /P o October 24/2013 5/ 34

@ A language for describing hardware systems and an associated
explicit-state model checker (for safety properties)
@ Muryp system has 4 parts:
@ variables (think booleans or enumerated types, describing AP),
@ initial states (a predicate over the variables describing /),
© guarded commands (of the form g = a, where g is a “guard” and a is
an update action, describing R).
@ invariants (a predicate for Bad states).

@ Model checking a Mury system has 3 possible outcomes: pass, fail
with counter example, or run out of memory

B. Bingham (UBC) /PREAC October 24/2013 6 /34

Explicit-state MC by BFS

@ Set of visited states V = ()
@ Queue of expanded states WQ =[]

init

B. Bingham (UBC) Erlang/PREACH October 24/2013 7 /34

Explicit-state MC by BFS

@ Set of visited states V = {a}
@ Queue of expanded states WQ = [a]

init

B. Bingham (UBC) Erlang/PREACH October 24/2013 7 /34

Explicit-state MC by BFS

@ Set of visited states V = {a, b, c}
@ Queue of expanded states WQ = [b, ¢]

init

B. Bingham (UBC) Erlang/PREACH October 24/2013 7 /34

Explicit-state MC by BFS

@ Set of visited states V = {a, b, ¢, d}
@ Queue of expanded states WQ = [c, d]

init

B. Bingham (UBC) Erlang/PREACH October 24/2013 7 /34

Explicit-state MC by BFS

@ Set of visited states V = {a, b,c,d, e, f}
@ Queue of expanded states WQ = [d, e, f]

init

B. Bingham (UBC) Erlang/PREACH October 24/2013 7 /34

Explicit-state MC by BFS

@ Set of visited states V = {a, b,c,d, e, f}
@ Queue of expanded states WQ = [e, f]

init

B. Bingham (UBC) Erlang/PREACH October 24/2013 7 /34

Explicit-state MC by BFS

@ Set of visited states V = {a, b, c,d, e, f, g}
@ Queue of expanded states WQ = [f, g]

init

B. Bingham (UBC) Erlang/PREACH October 24/2013 7 /34

Explicit-state MC by BFS

@ Set of visited states V = {a, b,c,d, e, f, g, h}
@ Queue of expanded states WQ = [g, h]

init

B. Bingham (UBC) Erlang/PREACH October 24/2013 7 /34

Explicit-state MC by BFS

@ Set of visited states V = {a, b,c,d, e, f, g, h}
@ Queue of expanded states WQ = [h]

init

B. Bingham (UBC) Erlang/PREACH October 24/2013 7 /34

Explicit-state MC by BFS

@ Set of visited states V = {a, b,c,d, e, f, g, h}
@ Queue of expanded states WQ =[]

init

B. Bingham (UBC) Erlang/PREACH October 24/2013 7 /34

State-space explosion

o Bad news: The number of reachable states tends to blow up
exponentially in the number of variables, i.e |Reachable| o 214!,

@ In other words, adding just one more boolean variable to the system
can cause the number of states to DOUBLE! This means double the
memory and double the runtime for explicit-state MC of safety.

@ ALL methods of MC suffer from this problem.

@ Methods to curb: abstraction, symmetry reduction, partial order
reduction

@ Another method: distribute the MC computation among a network of
machines!

B. Bingham (UBC) /P o October 24/2013 8 /34

Why Distributed Explicit State Model Checking?

@ State-space explosion assures us that we can always use more memory
(and cycles)

o Easily takes advantage of the aggregate memory of commodity
machines and multiple cores
Question: Who cares about increasing our MC capabilities by a
factor of [100, 1000] when we face an exponential explosion?

© This factor can make the difference between verifying a very high
level model and one that includes critical details

@ Techniques of abstraction/decomposition require human effort —
terminate the human task sooner and hand it off to a large cluster

B. Bingham (UBC) /P o October 24/2013 9 /34

@ Stern-Dill Algorithm: Distributed BFS
@ + Other Tools

B. Bingham (UBC) Erlang/PREACH October 24/2013 10 / 34

Stern-Dill Algorithm[SD97] Overview

Simple and fundamental approach to distributing explicit-state model
checking (for safety)

o Assumes a uniform random hash function owner : States — PIDs
e Thread PID i only stores states s such that owner(s) = i.

@ Each PID maintains two data structures:

o V: Set of (owned) states visited so far
e WQ: List of states waiting to be expanded

Start: compute initial states and send to their owners

Iterate: state sucessors are sent to their respective owners

Termination: when each WQ is empty and no messages are in flight

B. Bingham (UBC) /PREAC October 24/2013 11 /34

Stern-Dill Pseudocode

V: {s1,..., 5}

. state s
(visited states)

where owner(s) =i

(9p]
o
Ll
X
o
=
—
(]
L=
=]
o
(]
)
O
@]
=2
~
=2
<<
—l

Stern-Dill Pseudocode

V: {s1,....,sc} U{s}

(visited states)

if s € V —+discard s

if s¢ V — add s to V

state s

where owner(s) =i

(9p]
o
Ll
X
o
=
—
(]
L=
=]
o
(]
)
O
@]
=2
~
=2
<<
—l

Stern-Dill Pseudocode

V: {s1,....,sc} U{s}

(visited states)

if s € V —+discard s

state s

if s¢ V — add s to V

compute s sucessors

B. Bingham (UBC) Erlang/PREACH October 24/2013 12 / 34

Some Optimizations

e "“State Batching”: from [SD97], delay sending states to another
thread until enough states accumulate
e Mitigates the overhead of network message passing
e Important: appropriate proviso to avoid deadlock, i.e. always send
states eventually
e Every DEMC tool does this in some form
@ “Less-Uniform Partitioning”: from parallel Spin [LS99]
o States are composed of sets of variables (s, s, ..., sx) for k Promella
processes
o Instead of owner depending on each s;, let owner depend on only one s;
e If most transitions don’t change s;'s variables, state sucessors stay local
to the thread (no communication necessary)
o However: may be less balanced than owner depending on all variables

B. Bingham (UBC) Erlang/PREACH October 24/2013 13 / 34

Eddy (Murp)[MPS*09]

Parallel implementation of the Mury model
checker, from Univ. of Utah
@ Use MPI for distributed communication, split
one Stern-Dill thread into two p-threads

@ For each peer: maintain a communication
queue of 8 batches of 1024 states

@ Computation thread: expands states and writes
to comm. queues

o Communication thread: wakes up when a
message arrives or a batch fills up

@ Overlaps message handling with state
expansion; good from a software engineering
perspective

B. Bingham (UBC) /PREAC October 24/2013 14 / 34

© The PREACH Model Checker

B. Bingham (UBC) Erlang/PREACH October 24/2013 15 / 34

What is PREACH[BBdP+10]?

e PREACH (Parallel REACHability) is a distributed explicit-state model
checker (UBC and Intel)
@ Input: the Mury modeling language; checks state invariants
o New: Murp syntax extended by PREACH to support deadlock freedom
and transition invariants

@ Runs on a network of heterogenous machines including multicore

@ Communication is handled by Erlang, a distributed functional
language, while C++ libraries handle compute-intensive model
checking tasks

@ Emphasis on scalability — billions of states

o Robustness
e Simplicity
o Performance? (a secondary concern)

B. Bingham (UBC) /PREAC October 24/2013

Stern-Dill in PREACH

WQ: list of states; stored on disk

V: set of states; Mury hash table in memory
while =TERMINATED() {

if "EMPTY(WQ) {
s := DEQUEUE(WQ);
foreach r in SUCCESSORS(S) {

OWNER(r) ! r; }} # send successor state r
if RECEIVE(s) {

if -1IS_.MEMBER(s, V) {
ADD_ELEMENT(s, V);
CHECK_INVARIANTS(S);
ENQUEUE(s, WQ);
H}

B. Bingham (UBC)

Erlang/PREACH

October 24/2013 17 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?

B. Bingham (UBC) /PREAC October 24/2013 18 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

B. Bingham (UBC) /PREAC October 24/2013 18 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

© Each thread keeps two counters, NumSent and NumRecd

e NumSent++ when sending a state; NumRecd++ when a state is
received

B. Bingham (UBC) /PREAC October 24/2013 18 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

© Each thread keeps two counters, NumSent and NumRecd
e NumSent++ when sending a state; NumRecd++ when a state is
received
@ When my WQ has been empty for some threshold amount of time,
send message im_idle to root

B. Bingham (UBC) /PREAC October 24/2013 18 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

© Each thread keeps two counters, NumSent and NumRecd

e NumSent++ when sending a state; NumRecd++ when a state is
received

@ When my WQ has been empty for some threshold amount of time,
send message im_idle to root

© When root receives im_idle, broadcast request_stats to all workers

B. Bingham (UBC) /PREAC October 24/2013 18 /

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

© Each thread keeps two counters, NumSent and NumRecd
e NumSent++ when sending a state; NumRecd++ when a state is
received
@ When my WQ has been empty for some threshold amount of time,
send message im_idle to root
© When root receives im_idle, broadcast request_stats to all workers
@ When a worker receives request_stats, HALT computation and report:

o If my WQ is nonempty: send im_not_done to root
o If my WQ is empty: send {my_stats, NumSent, NumRecd} to the root

B. Bingham (UBC) /PREAC October 24/2013 18 / 34

Distributed Termination

How can we be sure that each WQ is empty and no messages are in flight?
Ideas?

© Each thread keeps two counters, NumSent and NumRecd
e NumSent++ when sending a state; NumRecd++ when a state is
received
@ When my WQ has been empty for some threshold amount of time,
send message im_idle to root

When root receives im_idle, broadcast request_stats to all workers
When a worker receives request_stats, HALT computation and report:
o If my WQ is nonempty: send im_not_done to root
o If my WQ is empty: send {my_stats, NumSent, NumRecd} to the root
© Root decides if we're really done:
e If root receives my_stats messages from all workers AND
> NumSent; =Y NumRecd;, broadcast terminated
o Otherwise: broadcast resume message

©0

B. Bingham (UBC) /PREAC October 24/2013 18 / 34

Architecture

‘Murcp + tweaks + Erlang = PREACH‘

C++
representation
mymodel.C

Murphi
Source
mymodel.m

Murphi
Frontend
(mu)

C++ Shared Murphi
Library Backend code

mymodel.so *.h*.C
+ wrappers =

*Murphi Engine”

~§
- ~§
Anctlon .~
~

Il
catls = Erlang/C

interface
library
*.h *.a

B. Bingham (UBC) Erlang/PREACH October 24/2013 19 / 34

Load Balancing

Bad News: While state space is partitioned evenly, dynamic load (WQ
length) can vary a lot

@ Some threads will finish early and idle

@ Heterogenous computing environment exacerbates the problem

400000 T T T T T

350000 q

300000 [

250000 | i B

200000 o e i

Work Queue States

150000 | o E
100000

50000

0 ‘ ‘ L ‘
0 200 400 600 800 1000 1200
Seconds

Good News: We can effectively balance load without altering the static
state space partition

B. Bingham (UBC) Erlang/PREACH October 24/2013 20 / 34

Stern-Dill in PREACH

WQ: list of states;

V: set of states;

while —“TERMINATED() {
if "EMPTY(WQ) {

s = DEQU_EUE(WQ)? Insight: After s is added to
foreach r in SUCCESSORS(s) { V, it doesn’t matter which

. OWNER(r) ! r; }} thread computes the

if RECEIVE(s) { sucessors of s!

if “"IS_.MEMBER(s, V) {
ADD_ELEMENT(s, V);
CHECK_INVARIANTS(s);
ENQUEUE(s, WQ);

1}

October 24/2013

B. Bingham (UBC) Erlang/PREACH

Load Balancing Enabled

861 (LB) 1130 (no LB)
400000 T T T T T

350000 E

300000 |]

250000 .

200000 - 4 5

Work Queue States

150000 |- ' I, vy : .
100000

50000

0 200 400 600 800 1000 1200
Seconds

0

B. Bingham (UBC) Erlang/PREACH October 24/2013 22 / 34

Results and Status

The “BIG Model”: Intel industrial cache coherence protocol.

o ~ 95 billion states! (&)

@ ~ 10 days runtime on 120 cores

e = 110,000 states/second; =~ 900 states/second/core
Status:

@ Currently in use at Intel

@ Used by computer architects at Duke University, and a handful of
other people at various institutions

o Available for download [BEBdP11]

B. Bingham (UBC) /P o October 24/2013 23/ 34

Outline

© Remarks

B. Bingham (UBC) /PREAC October 24/2013 24 / 34

Erlang Pros + Cons

Was Erlang a good choice to build an industrial, explicit-state model
checker?
Short answer is YES:

e Erlang is easier to program than C/C++ with MPI — original
PREACH prototype written in one weekend

@ A good choice for this project where parallel speedup is not
paramount, rather stability and scalability

@ Small codebase, ~ 1000 lines.

o | agree with these statements from
erlang.org/faq/how_do_i.html:

o Lines of code: “A reasonably complex problem involving distribution
and fault tolerence will be roughly five times shorter in Erlang than in
cr

o Performance: Number crunching is about 10 times slower in Erlang
than C; communication heavy programs are about the same speed.

B. Bingham (UBC) /PREAC October 24/2013 25 / 34

Erlang Pros + Cons

Was Erlang a good choice to build an industrial, explicit-state model
checker?

Short answer is YES, however...

@ Documentation for Erlang isn't great, and some of the more obscure
features aren’t explained well

@ The method of interfacing with C code (.so files) is miserable, and
the API seems to change with new Erlang versions ®
e We learned how to do this from some random blog

o PREACH uses ~ 30 interface functions that call into Mury C code,
took some trial and error to learn how to pass various data types

B. Bingham (UBC) Erlang/PREACH

October 24/2013 26 / 34

A Few Directions

© Bottlenecks: in PREACH (+ other tools), the bottleneck is
state-expansion — especially bad in industrial models with ~ 5000
guarded commands!
o Several studies have considered GPU-accelerated model checking;
o Recent work [BBBC10] is the first (that I've seen) to use more than
one GPU — although they only use 2, achieving a factor of 5 speedup
@ Crash Recovery: an important consideration when running hundreds
of machines for days
@ Snapshot V and WQ periodically: can recover from model checking
thread crashes
@ Duplicate state ownership: can recover from a machine going down
© PREACH has a modest number of parameters for load balancing,
batching, flow control
o Use machine learning techniques [HHLBS09] to tune parameters
according to a new hardware configuration!

B. Bingham (UBC) /PREAC October 24/2013 27 / 34

Outline

e Erlang Tips + Tricks

B. Bingham (UBC) /'PREACH October 24/2013 28 / 34

Profiling

@ There's 4 profiling tools in Erlang: fprof, eprof, cover, cprof

@ My preference is eprof
@ Easy to use:

o At the start of your program, insert the lines
eprof:start(),
eprof:start_profiling([self()]),

o At the end of your program, inser the lines
eprof :stop_profiling(),
io:format ("Here’s the eprof output:™n"),
eprof :analyze(),

@ Gives the number of times each function was called as well as the
total time spent in each function

@ Program slowdown is modest

B. Bingham (UBC) Erlang/PREACH October 24/2013 29 / 34

The Process Dictionary

For when you REALLY want global variables...

@ Each process has it's own “dictionary” that can be used to store
global variables

@ Set and get with put (Key,Value) and get (Key); delete with
delete (Key)

@ Really useful for debugging or gathering program statistics

B. Bingham (UBC) Erlang/PREACH October 24/2013 30/

| slowly learned to always use case, and never use if

@ Suppose we want to implement a set with a list (i.e. only insert
elements that are new).

o With case:
insert(X,Set) ->
case lists:member(X,Set) of true —> Set;
false -> [X | Set] end.
o With if:
insert(X,Set) ->
IsInSet = lists:member(X,Set),
if IsInSet -> Set;
true -> [X | Set] end.

B. Bingham (UBC) /PREAC October 24/2013 31 /

Beware Big Mailboxes

Warning: The time it takes to receive a message is proportional to
the number of messages waiting in the inbox!

Ignoring this issue in PREACH causes crashes that arise from some
workers slowing down to a halt

@ As soon as one worker falls a little behind, it will never catch up
because it takes longer to receive states than the others

Solved with a crediting mechanism

Lesson: make sure your inboxes don’t blow up (say with stale
messages)

Inbox size can be checked with

{_, InboxSize} = process_info(self () ,message_queue_len)

B. Bingham (UBC)

October 24/2013 32 /34

Erlang Pointers

e erlang.org has OK documentation, but | prefer

@ Tutorial Blog “Learn you some Erlang for great good!" by Frederic
Trottier-Hebert
learnyousomeerlang.com/content

@ Joe Armstrong's Book, “Programming Erlang”

e PREACH source
https://bitbucket.org/jderick/preach

B. Bingham (UBC) /PREAC October 24/2013 33 /

Brad Bingham
binghamb@cs.ubc.ca

B. Bingham (UBC) October 24/2013 34 /34

Brad Bingham
binghamb@cs.ubc.ca

Thank-youl!

B. Bingham (UBC) Erlang/PREACH October 24/2013 34 /34

References |

B

B

J. Barnat, P. Bauch, L. Brim, and M. Ceska, Employing multiple cuda
devices to accelerate Itl model checking, Parallel and Distributed
Systems (ICPADS), 2010 IEEE 16th International Conference on,
2010, pp. 259-266.

B. Bingham, J. Bingham, F. M. de Paula, J. Erickson, G. Singh, and
M. Reitblatt, Industrial strength distributed explicit state model
checking, Parallel and Distributed Model Checking, 2010.

Jesse Bingham, John Erickson, Brad Bingham, and Flavio M.
de Paula, Open-source PREACH,
http://bitbucket.org/jderick/preach, 2011.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas
Stiitzle, ParamILS: an automatic algorithm configuration framework,
Journal of Artificial Intelligence Research 36 (2009), 267-306.

B. Bingham (UBC) Erlang/PREACH October 24/2013 35/ 34

http://bitbucket.org/jderick/preach

References |l

ﬁ F. Lerda and R. Sisto, Distributed-memory model checking with SPIN,
Proc. of SPIN 1999, volume 1680 of LNCS., Springer-Verlag, 1999,
pp. 22-39.

ﬁ I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and
G. Gopalakrishnan, Parallel and distributed model checking in eddy,
Int. J. Softw. Tools Technol. Transf. 11 (2009), no. 1, 13-25.

ﬁ U. Stern and D. L. Dill, Parallelizing the murphi verifier, International
Conference on Computer Aided Verification, 1997, pp. 256-278.

B. Bingham (UBC) Erlang/PREACH October 24/2013 36 / 34

	Background: Explicit-State Model Checking
	Stern-Dill Algorithm: Distributed BFS
	+ Other Tools

	The PReach Model Checker
	Remarks
	Erlang Tips + Tricks
	Appendix

