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Objectives

Understand how processors can communicate by sharing
memory.
Able to explain the term “sequential consistency”

I Describe a simple cache-coherence protocol, MESI
I Describe how the protocol can be implemented by snooping.
I Be aware that real machines make guarantees that are weaker

than sequential consistency.

Understand how a simple, mutual exclusion algorithm works.
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An Ancient Shared-Memory Machine

SWITCH

MEM1

CPU1CPU0

MEM0 MEM2 MEM3

Multiple CPU’s (typically two) shared a memory
If both attempted a memory read or write at the same time

I One is chosen to go first.
I Then the other does it’s operation.
I That’s the role of the switch in the figure.

By using multiple memory units (partitioned by address), and a
switching network, the memory could keep up with the processors.
But, now that processors are 100’s of times faster than memory,
this isn’t practical.
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A Shared-Memory Machine with Caches
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n−1

Caches reduce the number of main memory reads and writes.
But, what happens when a processor does a write?
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Today’s Story Line

Shared memory is wonderful:
I Now, you don’t have to bundle up your data structures as

messages.
I Just share a pointer.

But, what about concurrent accesses?
I How do I know that you’re done building a data structure before I try

to use it?
I What if we have a dynamically changing data structure?

F How do I make sure that I don’t change something when you’re in the
middle of using it.
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Simple Example: a bank account

ATM withdrawal Payroll deposit
atm(acct, amt) {

W1: x = acct.bal;
W2: x = x - amt;
W3: acct.bal = x;

}

pay(acct, amt) {
D1: y = acct.bal;
D2: y = y + amt;
D3: acct.bal = y;

}

What happens if a withdrawal and deposit happen “at the same time”?
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Concurrent withdrawal and deposit
Given a starting balance of $1,000,
concurrently withdraw $50 from an ATM while receiving a payroll
deposit of $1,200.
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Dekker’s Algorithm
Problem statement: ensure that at most one thread is in its critical
section at any given time.

thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: while(flag[1]) {
PC0= 4: if(turn != 0) {
PC0= 5: flag[0] = false;
PC0= 6: while(turn != 0);
PC0= 7: flag[0] = true;
PC0= 8: }
PC0= 9: }
PC0=10: critical section
PC0=11: turn = 1;
PC0=12: flag[0] = false;
PC0=13: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: while(flag[0]) {
PC1= 4: if(turn != 1) {
PC1= 5: flag[1] = false;
PC1= 6: while(turn != 1);
PC1= 7: flag[1] = true;
PC1= 8: }
PC1= 9: }
PC1=10: critical section
PC1=11: turn = 0;
PC1=12: flag[1] = false;
PC1=13: }

See http://en.wikipedia.org/wiki/Dekker’s_algorithm.
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Dekker’s algorithm guarantees mutual exclusion

Assume initialization: PC0 = PC1 = 0; flag[0] = flag[1] = false;
turn = 0.
Invariant:
I = ∀i ∈ {0,1}. flag[i] = (PCi ∈ {3,4,5,8,9,10,11})

∧ ¬((PC0 = 10) ∧ (PC1 = 10))
I Assertions about PCi refer to the state immediately before executing

the statement at PCi .
I Individual program statements are executed atomically, i.e. without

interference by actions of other threads.
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Proof that I is an invariant (1/2)

I = ∀i ∈ {0,1}. flag[i] = (PCi ∈ {3,4,5,8,9,10,11})
∧ ¬((PC0 = 10) ∧ (PC1 = 10))

I holds initially.
Statements that don’t modify flag[i], PCi 6∈ {2,5,7,12}.

I Thus, they maintain the clause connecting the value of flag[i] to
PCi .

I For example, if PCi = 0,
F Then I implies that flag[i] = false.
F Executing while(true) { sets PCi ← 1 and leaves

flag[i] = false.
F Thus, I continues to hold.

Similar reasoning applies for statements that do modify flag[i],
PCi ∈ {2,5,7,12}.
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Proof that I is an invariant (2/2)

I = ∀i ∈ {0,1}. flag[i] = (PCi ∈ {3,4,5,8,9,10,11})
∧ ¬((PC0 = 10) ∧ (PC1 = 10))

Now consider ¬((PC0 = 10) ∧ (PC1 = 10)).
I If PC0 ← 10,

F When PC0 was 3 which means that ¬flag[1].
F Because I held before performing the PC0 = 3: while(flag[1]) {

statement, PC1 6= 10.
F Thus, PC1 6= 10 after performing the statement at PC0 = 3, and
¬((PC0 = 10) ∧ (PC1 = 10)) continues to hold.

I Similar reasoning applies when PC1 ← 10.

Thus, I is maintained by all actions of both threads.
I is an invariant.
Also, I guarantees mutual exclusion because I implies
¬((PC0 = 10) ∧ (PC1 = 10)).
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Dekker’s algorithm guarantees progress

Assume that every statement eventually terminates.
I This requires that every time a thread enters its critical section, it

eventually leaves.
I We don’t require that the non-critical code terminate.

We can show a sequence of “eventually” properties that shows
that any time a thread tries to enter its critical section it eventually
does so. I.e.

PCi = 2 ; PCi = 10

I’ll spare you the proof.
I In class, I was asked about why the algorithm includes the turn

variable.
I turn is needed to ensure that both threads can make progress.
I See slide 33 for a “simplified” version without turn and why it fails.
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Dekker’s algorithm with caches (part 1)

A plausible execution (if the caches operate independently):
Initially: PC0 = PC1 = 0; flag[0] = flag[1] = false; turn = 0.
Thread 0 reaches PC0 = 2: flag[0]= true;

I The block for flag[0] is not in the processor 0’s cache.
I Processor 0 loads the block into its cache.
I Processor 0 sets flag[0] to true – in it’s cache.

Thread 0 reaches PC0 = 3: while(flag[1])
I The block for flag[1] is not in the processor 0’s cache.
I Processor 0 loads the block into its cache from main memory.
I Processor 0 sees that flag[1] is false and enters its critical

section.
Thread 1 reaches PC1 = 2: flag[1]= true;

I Processor 1 loads the block for flag into its cache from main
memory.

I Processor 1 sets flag[1] to true – in it’s cache.
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Dekker’s algorithm with caches (part 2)

cache0
flag[0] = true
flag[1] = false
...

=100PC =10

cache1
flag[0] = false
flag[1] = true
...

Memory
flag[0] = false
flag[1] = false
...

1PCCPU0 CPU1

Thread 1 reaches PC1 = 3: while(flag[0])
I The block for flag[0] is not in the processor 1’s cache.
I Processor 1 loads the block into its cache from main memory.
I Processor 1 sees that flag[0] is false and enters its critical

section.

We have a mutual exclusion violation.
We need a way to keep the caches consistent.
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The MESI protocol
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Caches can share read-only copies of a cache block.
When a processor writes a cache block, the first write goes to
main memory.

I The other caches see the write and invalidate their copies.
I This ensures that writeable blocks are exclusive.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 3, 2013 15 / 35



A typical cache

way3
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Only the read-path is shown. Writing is similar.
This is a 16K-byte, 4-way set-associative cache, with 16 byte
cache blocks.
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How the Cache Works

Read:
I The address is divided into three pieces: block-offset, cache-index,

and tag.
I The index is used to look up on entry in each “way”.
I The tags from each way are compared with the tag of the address:

F If any tag matches, that way provides the data.
F If no tags miss, then a cache miss occurs.
F Some current block is evicted from the cache to make room for the

incoming block.
I The block-offset determines which bytes from the cache block are

returned to the CPU.

Writes are similar to reads.
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Snooping caches (part 1 of 2)

CPUsengine

MESI

CPU

tags
snoop

local
tags

data

miss
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shared bus

...
Memory
and other

Each cache has two copies of the tags.
One copy is used for operations by the local processor.
The other copy is used to monitor operations on the main memory
bus.

I if another processor attempts to read a block which we have in the
exclusive or modified state, we provide the data (and update
main memory).

I if another processor attempts to write a block that we have, we
invalidate our block (updating main memory first if our copy was in
the modified state.
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Snooping caches (part 2 of 2)

CPUsengine

MESI

CPU

tags
snoop

local
tags

data

miss

match

shared bus

...
Memory
and other

Pros and cons:
Fairly easy to implement.
Doesn’t scale to large numbers of processors.

I All cache misses processed on the same bus.
I Engineering marvels push this with multi-level caches and multiple

buses, but it get very expensive, and still doesn’t scale to 1000s of
processors.
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Directory schemes

Main memory keeps a copy of the data and
I a bit-vector that records which processors have copies, and
I a bit to indicate that one processor has a copy and it may be

modified.
A processor accesses main memory as required by the MESI
protocol.

I The memory unit sends messages to the other CPUs to direct them
to take actions as needed by the protocol.

I The ordering of these messages ensures that memory stays
consistent.
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Sequential Consistency

Memory is said to be sequentially consistent if
All memory reads and writes from all processors can be arranged
into a single, sequential order, such that:

I The operations for each processor occur in the global ordering in
the same order as they did on the processor.

I Every read gets the value of the preceding write to the same
address.

Sequential consistency corresponds to what programmers think
“ought” to happen.
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MESI Guarantees Sequential Consistency

First we prove that at most one processor can have the cache
block for any particular address in the E or M state.
Define:

value(addr)
= cachei(addr).data, if ∃i . cachei(addr).state ∈ {E,M}
= MEM(addr), otherwise

We can show that every read(addr) gets the value value(addr),
and that
We value(addr) gives the value from the most recent write to
addr .

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 3, 2013 22 / 35



Dekker’s with C-threads

typedef struct { % thread parameters
int id, ntrials;

} dekker args;

% shared variables
int flag[] = {0,0};
int count[] = {0,0};
int turn = 0;

int dekker thread(void *void arg) {
...
for(int i = 0; i < ntrials; i++) {

do some work;
acquire the lock;
critical section (includes test for interference);
release lock;

}
}
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Work, then lock

% do a random amount of “work” before critical region
r = 23*r & 0x3f; % simple pseudo-random, range = {0 . . . 63}
for(int j = 0; j < r; j++); % this is “work”?

% acquire the lock
flag[me] = TRUE; % indicate intention to enter critical region
while(flag[!me]) {

if(turn != me) {
flag[me] = FALSE; % give the other thread a chance
while(turn != me); % spin waiting for turn
flag[me] = TRUE; % try again

}
}
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Critical section, then unlock

% critical section
for(int j = 0; j < 10; j++) {

count[me] = j;
% check zero reports error and dies if count[!me] != 0
check zero(count, !me, i);

}
count[me] = 0;

% release the lock
turn = !me;
flag[me] = 0;
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Let’s try it

% gcc -std=c99 dekker0.c cz.o -o d0
% d0
check zero failed for trial 8: a[0] = 1
% d0
check zero failed for trial 986: a[1] = 4
% d0
check zero failed for trial 898: a[1] = 4
% d0
check zero failed for trial 10: a[0] = 1
% ...

What happened?
Why?
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Weak Consistency

interface

CPU

mem

read

queue

cache

mem

write

queue

memory

A CPU may have multiple cache-misses and MESI
operations in-flight at the same time.
Typically, reads can move ahead of writes to maximize
program performance.
Why?

I Because there may be instructions waiting for the data
from a load.

I A transition from “shared” to “modified” requires
notifying all processors – this can take a long time.

This means that real computers don’t guarantee
sequential consistency.
But they still make some promises.

I Look up “Total Store Order” if you want to learn more.
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Fixing the bug
% acquire the lock
flag[me] = TRUE; % indicate intention to enter critical region
asm ("mfence");

while(flag[!me]) {
if(turn != me) {

flag[me] = FALSE; % give the other thread a chance
while(turn != me); % spin waiting for turn
flag[me] = TRUE; % try again

asm ("mfence");
}

}

Try again:
% d1
ok
% d1
ok
% d1
ok
% ...
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What’s mfence?

A memory fence.
Simple version:

I All loads and stores issued by the processor that executes the
mfence must complete globally before execution continues beyond
the mfence.

mfence instructions are expensive
And in-line assembly code is painful

I Not portable.
I Hard to read.
I Who wants to program in assembly?
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Summary
Shared-Memory Architectures

I Use cache-coherence protocols to allow each processor to have its
own cache while maintaining (almost) the appearance of having
one shared memory for all processors.

F A typical protocol: MESI
F The protocol can be implemented by snooping or directories.

I Using cache-memory interconnect for interprocessor
communication provides:

F High-bandwidth
F Low-latency, but watch out for fences, etc.
F High cost for large scale machines.

Shared-Memory Programming
I Need to avoid interference between threads.

F Assertional reasoning (e.g. invariants) are crucial,
much more so than in sequential programming.

F There are too many possible interleavings to handle intuitively.
F In practice, we don’t formally prove complete programs,

but we use the ideas of formal reasoning.
I Real computers don’t provide sequential consistency.

F Use a thread library.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 3, 2013 30 / 35



Preview
October 8: Message Passing Multiprocessors

Reading: Lin & Snyder, chapter 2, pp. 30–43.
Homework: Homework 3 goes out.

October 10: Models of Parallel Computation
Reading: Lin & Snyder, chapter 2, pp. 43–59.
Homework: Homework 2 due.

October 15: Peril-L, Reduce, and Scan
Reading: Lin & Snyder, chapter 3, pp. 112–125.

October 17: Work allocation
Reading: Lin & Snyder, chapter 3, pp. 125–142.

October 22: Midterm
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Review

What is sequential consistency?
How can a cache-coherence protocol be implemented by
snooping?
What is mutual exclusion?
Why did Dekker’s algorithm fail when executed on a modern
computer?
What is a memory fence?
How do these issues influence good software design practice?
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Supplementary Material

Dekker’s algorithm without the turn variable:

thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: while(flag[1]) {
PC0= 5: flag[0] = false;
PC0= 7: flag[0] = true;
PC0= 9: }
PC0=10: critical section
PC0=12: flag[0] = false;
PC0=13: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: while(flag[0]) {
PC1= 5: flag[1] = false;
PC1= 7: flag[1] = true;
PC1= 9: }
PC1=10: critical section
PC1=12: flag[1] = false;
PC1=13: }

I’ve left the PC numbers as in the original version (slide 8).
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Analysis of the “no-turn” version

The “no-turn” version guarantees mutual exclusion.

I The invariant and proof on slides 9–11 applies for this version as
well.

The “no-turn” version does not guarantee progress.

I See the counter-example on the next slide.
I By repeating lines 4–10 indefinitely

F Thread 0 never enters its critical region.
F Thread 1 enters its critical region an unbounded number of times.

Thread 0 waits forever to enter its critical region.
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Counter-example trace for the no-turn algorithm
step from state perform

PC0 PC1 flag[0] flag[1]

0 0 0 false false PC0 = 0: while(true) {
1 1 0 false false PC0 = 1: non-critical code
2 2 0 false false PC0 = 2: flag[0] = true;

3 3 0 true false PC1 = 0: while(true) {
4 3 1 true false PC1 = 1: non-critical code
5 3 2 true false PC1 = 2: flag[1] = true;

6 3 3 true true PC0 = 3: while(flag[1]) {
7 5 3 true true PC0 = 5: flag[0] = false;

8 7 3 false true PC1 = 3: while(flag[1]) {
9 7 10 false true PC1 = 10: critical section

10 7 12 false true PC1 = 12: flag[1] = false;

11 7 0 false false PC0 = 7: flag[0] = true;

12 3 0 false false PC1 = 0: while(true) {
≥13 repeat steps 4–12 indefinitely.
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