Matrix Multiplication

Mark Greenstreet

CpSc 418 — Sept. 24, 2013

Ouitline:
@ Sequential Matrix Multiplication
@ Parallel Implementations, Performance, and Trade-Offs.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 1/21

Objectives

Apply concepts of algorithm analysis, parallelization, overhead, and
performance measurement to a real problem.

@ Design sequential and parallel algorithms for matrix multiplication.
@ Analyse algorithms and measure performance.
@ I|dentify bottlenecks and refine algorithms.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 2/21

Matrix representation in Erlang

@ 'll represent a matrix as a list of lists.
@ For example, the matrix

12 3 4
14 9 16
1 8 27 64

is represented by the Erlang nested-list:
[(1, 2, 3, 4]
[1, 4, 9, 16]
[1, 8, 27, 64] 1
@ The empty matrixis [].
» This means my representation can’t distinguish between a2 x 0
matrix, a 0 x 4 matrix, and a 0 x 0 matrix.

» That's OK. This package is to show some simple examples.
» I’'m not claiming it’s for advanced scientific computing.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 3/21

Sequential Matrix Multiplication

mult (A, B) —->
BT = transpose (B),
lists:map (
fun (Row_of A) —>
lists:map (
fun (Col_of B) ->
dot_prod(Row_of A, Col of B)
end, BT)
end, A).

dot_prod(Vvl, Vv2) ->
lists:foldl(
fun ({X, Y}, Sum) -> Sum + X*Y end,
0, lists:zip(Vl, V2)).

@ Next, we’ll use list comprehensions to get a more succinct version.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 4/21

Matrix Multiplication, with comprehensions

mult (A, B) ->
BT = transpose (B),

[[dot_prod(RowA, ColB) || ColB <- BT] || RowA <- A].
transpose ([]) —> [1; % special case for empty matrices
transpose ([[]1]_1) -> [1; % bottom of recursion, the columns are empty
transpose (M) —>

[[H || [H | _T] <- M] % create arow from the first column of M

| transpose([T || [_H | T] <- M]) % now, transpose what’s left
].
@ [Expr(X) || X <- List] isequivalentto

lists:map (fun(X) -> Expr(X) end, List).
@ And you can do much more with comprhensions.
@ See slides ?? and 21 for examples.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 5/21

Performance — Modeled

@ Really simple, operation counts:
Multiplications: n_rows_a*n_cols_b*n_cols_a.
Additions: n_rows_a*n_cols_bx*(n_cols_a—1).
Memory-reads: 2x#Multiplications.
Memory-writes: n_rows_a *n_cols_b.
Time is O(n_rows_a*n_cols_b#(n_cols_a—1)),
If both matrices are N x N, then its O(N?).
@ But, memory access can be terrible.
» For example, let matrices a and b be 1000 x 1000.
» Assume a processor with a 4M L2-cache (final cache), 32
byte-cache lines, and a 200 cycle stall for main memory accesses.
» Observe that a row of matrix a and a column of b fit in the cache. (a
total of ~40K bytes).
» But, all of b does not fit in the cache (that's 8 Mbytes).
» So, on every fourth pass through the inner loop, every read from b
is a cache miss!
» The cache miss time would dominate everything else.

@ This is why there are carefully tuned numerical libraries.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 6/21

vV vy vy VvYyy

Performance — Measured

Time for N x N matrix multiplication

Time

@ Cubic of best fit: T = (107N3 4 134N? 4+ 173N — 32)ns.
@ Fit to first six data points.

@ Cache misses effects are visible, for N=1000:

» model predicts T = 107seconds,
» but the measured value is T = 142seconds.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 7/21

Parallel Algorithm 1

A B AXB

X = 1%

@ Parallelize the outer-loop.

@ Each iteration of the outer-loop multiplies a l:| X
row of A by all of B to produce a row of A x B.

@ Divide A (and B) into blocks.
@ Each processor sends its blocks of B to all of

the the other processors. l:| X

@ Now, each processor has a block of rows of
A and all of B. The processor computes it's
part of the product to produce a block of rows

of C.
X
@ Note: OpenMP does this kind of
parallelization automatically.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 8/21

Parallel Algorithm 1 in Erlang

% mult (W, Key, Keyl, Key2) —create a matrix associated with Key
% thatis the product of the matrices associated with Key1 and Key2.
multl (W, Key, Keyl, Key2) ->
Nproc = workers:nworkers (W),
workers:update (W, Key,
fun (PS, I) —>
A = workers:get (PS, Keyl), % myrowsofA
B = workers:get (PS, Key2), % myrowsof B
(ww ! {B, I} || WW <— W], % sendmy rows of B to everyone
B_full = lists:append(% receive B from everyone
[receive {BB, J} —-> BB end
|| J <= lists:seg(l, Nproc)]),
matrix:mult (A, B_full) % compute my part of the product
end

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013

9/21

Performance of Parallel Algorithm 1 — Modeled

@ CPU operations: same total number of multiplies and adds, but
distributed around P processors. Total time: O(N3/P).

@ Communication: Each processors sends (and receives) P — 1
messages of size N?/P. If time to send a message is ty + t; *x M
where M is the size of the message, then the communication time
is

2
(P—1) (to + 4 A;) = O(N? + P), but, beware of large constants
= O(N?), N2 > P

@ Memory: Each process needs O(N?/P) storage for its block of A
and the result. It also needs O(N?) to hold all of B.

» The simple algorithm divides the computation across all processors,
but it doesn’t make good use of their combined memory.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 10/21

Performance of Parallel Algorithm 1 — Measured

1 2 4 8 16 32 64 128
number of processors

Mark Greenstreet Matrix Multiplication

B

Parallel Algorithm 2 (illustrated)
A

12/21

CpSc 418 — Sept. 24, 2013

Matrix Multiplication

Mark Greenstreet

Parallel Algorithm 2 (code sketch)

@ Each processor first computes what it can with its rows from A and
B.
» It can only use N/P of its columns of its block from A.
» |t uses its entire block from B.
» We’ve now computed one of P matrices, where the sum of all of
these matrices is the matrix AB.
@ We view the processors as being arranged in a ring,
» Each processor forwards its block of B to the next processor in the
ring.
» Each processor computes an new partial product of AB and adds it
to what it had from the previous step.
» This process continues until every block of B has been used by
every processor.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 13/21

Algorithm 2, Erlang

par matrix mult2 (ProcList, MyIndex, MyBlockA, MyBlockB) ->
NProcs = length (ProcList),
NRowsA = length(d),
NColsB = length(hd(B)), % assume length(B) > 0
ABlocks0 = rotate (MyIndex, blockify cols (A, NProcs)),
PList = rotate (NProcs - (MyIndex-1),
lists:reverse (ProcList)),
helper (ProcList, ABlocks, MyBlockB,
matrix:zeros (NRowsA, NColsB)).

helper ([P_head | P_tail], [A_head | A_tail], BBlock, Accum) ->

if A tail == [] -> ok;
true -> P _head ! BBlock
end,
Accum2 = matrix:add(Accum, matrix:mult (A _head, BBlock)),
if A tail == [] —-> Accum?2;
true —->

helper(P_tail, A tail,
receive BBlock2 —-> BBlock2 end, Accum2)
end.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 14/21

Algorithm 2 — notes on the Erlang code

@ blockify_cols (A, NProcs) produces a list of NProcs
matrices.

» Each matrix has NRowsA rows and NColsa columns,
» where NColsA is the number of columns of MyBlockA.
» Let A(MyTIndex,) denote the j% such block.

@ rotate (N, List) ->
{L1, 12} = lists:split (N, List),
L2 ++ L1.

@ The algorithm is based on the formula:

NProcs
C(MyIndex,:) = Z A(MyIndex,j)* B(J,:)
j=1

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 15/21

Performance of Parallel Algorithm 2

@ CPU operations: Same as for parallel algorithm 1: total time:
O(N3/P).
e Communication: Same as for parallel algorithm 1: O(N? + P).
» With algorithm 1, each processor sent the same message to P — 1
different processors.
» With algorithm 2, for each processor, there is one destination to
which it sends P — 1 different messages.
» Thus, algorithm 2 can work efficiently with simpler interconnect
networks.

@ Memory: Each process needs O(N?/P) storage for its block of A,
its current block of B, and its block of the result.

» Note: each processor might hold onto its original block of B so we
still have the blocks of B available at the expected processors for
future operations.

@ Do the memory savings matter?

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 16/21

Bad performance, pass it on

@ Consider what happens with algorithm 2 if one processor, Psjon
takes a bit longer than the others one of the times its doing a block
multiply.

» Pgow Will send it’s block from B to its neighbour a bit later than it
would have otherwise.

» Even if the neighbour had finished its previous computation on time,
it won’t be able to start the next one until it gets the block of B from
Pslow-

» Thus, for the next block computation, both Pg,, and its neighbour
will be late, even if both of them do their next block computation in
the usual time.

» In other words, tardiness propagates.

@ Solution: forward your block to you neighbour before you use it to
perform a block computation.

» This overlaps computation with communication, generally a good
idea.

» We could send two or more blocks ahead if needed to compensate
for communication delays and variation in compute times.

» This is a way to save time by using more memory.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 17/21

Even less communication

@ In the previous algorithms, computate time grows as N3/P, while
communication time goes as (N? + P).

@ Thus, if N is big enough, computation time will dominate
communication time.

@ There’s not much we can do to reduce the number of
computations required (I'll ignore Strassen’s algorithm, etc. for
simplicity).

@ If we can use less communication, then we won’t need our
matrices to be as huge to benefit from parallel computation.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 18/21

Summary

@ Matrix multiplication is well-suited for a parallel implementation.
@ Need to consider communication costs.

@ Connection of theory with actual run time is pretty good:

» But the matrices have to be big enough to amortize the
communication costs.

@ In future lectures, may look an how to further reduce
communication.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 19/21

Preview

September 26: Superscalars and compilers
Reading: The MIPS R10000 Superscalar Microprocessor (Yeager)
short lecture: ends at 4:30
Mini-assignment: Mini-assignment 3 due

October 1: Shared Memory Multiprocessors
Reading: Lin & Snyder, chapter 2, pp. 30—43.
Homework: Homework 3 goes out

October 3: Message Passing Multiprocessors

October 8: Models of Parallel Computation

Reading: Lin & Snyder, chapter 2, pp. 43-59.
October 10: Peril-L, Reduce, and Scan

Reading: Lin & Snyder, chapter 3, pp. 112-125.
October 13: Work allocation

Reading: Lin & Snyder, chapter 3, pp. 125-142.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 20/ 21

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491460&tag=1

List Comprehensions, one more practice problem

pythag (ListX, ListY) -> ListP.

ListX and ListY are lists of integers. L.i stP consists of all tuples
{x, Y} visanelementof Listy, and v'x? + Y2 is an integer. where
x is an element of ListX, Y is an element of Listy,and X < Y is an

integer. Here’s a function that tests whether or not an integer is a
perfect square:

is_square (N, [Lo, Hi]) ->
Mid = (Lo + Hi) div 2,
MidSq = MidsMid,
if
MidSqg == N) -> true;

Lo >= Hi) -> false;
MidSg > N) -> is_square (N, [Lo, Mid]);

(
(
(
(MidSg < N) -> is_square (N, [Mid+1, Hi])

end.

Mark Greenstreet Matrix Multiplication CpSc 418 — Sept. 24, 2013 21/21

