
Matrix Multiplication

Mark Greenstreet

CpSc 418 – Sept. 24, 2013

Outline:
Sequential Matrix Multiplication
Parallel Implementations, Performance, and Trade-Offs.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 1 / 21

Objectives

Apply concepts of algorithm analysis, parallelization, overhead, and
performance measurement to a real problem.

Design sequential and parallel algorithms for matrix multiplication.
Analyse algorithms and measure performance.
Identify bottlenecks and refine algorithms.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 2 / 21

Matrix representation in Erlang

I’ll represent a matrix as a list of lists.
For example, the matrix 1 2 3 4

1 4 9 16
1 8 27 64

is represented by the Erlang nested-list:

[[1, 2, 3, 4]
[1, 4, 9, 16]
[1, 8, 27, 64]]

The empty matrix is [].
I This means my representation can’t distinguish between a 2× 0

matrix, a 0× 4 matrix, and a 0× 0 matrix.
I That’s OK. This package is to show some simple examples.
I I’m not claiming it’s for advanced scientific computing.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 3 / 21

Sequential Matrix Multiplication

mult(A, B) ->
BT = transpose(B),
lists:map(

fun(Row of A) ->
lists:map(

fun(Col of B) ->
dot prod(Row of A, Col of B)

end, BT)
end, A).

dot prod(V1, V2) ->
lists:foldl(

fun({X,Y},Sum) -> Sum + X*Y end,
0, lists:zip(V1, V2)).

Next, we’ll use list comprehensions to get a more succinct version.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 4 / 21

Matrix Multiplication, with comprehensions

mult(A, B) ->
BT = transpose(B),
[[dot prod(RowA, ColB) || ColB <- BT] || RowA <- A].

transpose([]) -> []; % special case for empty matrices
transpose([[]|]) -> []; % bottom of recursion, the columns are empty
transpose(M) ->
[[H || [H | T] <- M] % create a row from the first column of M

| transpose([T || [H | T] <- M]) % now, transpose what’s left
].

[Expr(X) || X <- List] is equivalent to
lists:map(fun(X) -> Expr(X) end, List).
And you can do much more with comprhensions.
See slides ?? and 21 for examples.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 5 / 21

Performance – Modeled
Really simple, operation counts:

I Multiplications: n rows a ∗ n cols b ∗ n cols a.
I Additions: n rows a ∗ n cols b ∗ (n cols a− 1).
I Memory-reads: 2∗#Multiplications.
I Memory-writes: n rows a ∗ n cols b.
I Time is O(n rows a ∗ n cols b ∗ (n cols a− 1)),

If both matrices are N × N, then its O(N3).
But, memory access can be terrible.

I For example, let matrices a and b be 1000× 1000.
I Assume a processor with a 4M L2-cache (final cache), 32

byte-cache lines, and a 200 cycle stall for main memory accesses.
I Observe that a row of matrix a and a column of b fit in the cache. (a

total of ∼40K bytes).
I But, all of b does not fit in the cache (that’s 8 Mbytes).
I So, on every fourth pass through the inner loop, every read from b

is a cache miss!
I The cache miss time would dominate everything else.

This is why there are carefully tuned numerical libraries.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 6 / 21

Performance – Measured

100 101 102 103
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

103

N

Ti
m

e

Time for N × N matrix multiplication

Cubic of best fit: T = (107N3 + 134N2 + 173N − 32)ns.
Fit to first six data points.
Cache misses effects are visible, for N=1000:

I model predicts T = 107seconds,
I but the measured value is T = 142seconds.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 7 / 21

Parallel Algorithm 1
A BA B

Parallelize the outer-loop.

Each iteration of the outer-loop multiplies a
row of A by all of B to produce a row of A×B.

Divide A (and B) into blocks.

Each processor sends its blocks of B to all of
the the other processors.

Now, each processor has a block of rows of
A and all of B. The processor computes it’s
part of the product to produce a block of rows
of C.

Note: OpenMP does this kind of
parallelization automatically.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 8 / 21

Parallel Algorithm 1 in Erlang

% mult(W, Key, Key1, Key2) – create a matrix associated with Key
% that is the product of the matrices associated with Key1 and Key2.
mult1(W, Key, Key1, Key2) ->
Nproc = workers:nworkers(W),
workers:update(W, Key,
fun(PS, I) ->

A = workers:get(PS, Key1), % my rows of A
B = workers:get(PS, Key2), % my rows of B
[WW ! {B, I} || WW <- W], % send my rows of B to everyone
B full = lists:append(% receive B from everyone
[receive {BB, J} -> BB end
|| J <- lists:seq(1, Nproc)]),

matrix:mult(A, B full) % compute my part of the product
end

).

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 9 / 21

Performance of Parallel Algorithm 1 – Modeled

CPU operations: same total number of multiplies and adds, but
distributed around P processors. Total time: O(N3/P).
Communication: Each processors sends (and receives) P − 1
messages of size N2/P. If time to send a message is t0 + t1 ∗M
where M is the size of the message, then the communication time
is

(P − 1)
(

t0 + t1
N2

P

)
= O(N2 + P), but, beware of large constants

= O(N2), N2 > P

Memory: Each process needs O(N2/P) storage for its block of A
and the result. It also needs O(N2) to hold all of B.

I The simple algorithm divides the computation across all processors,
but it doesn’t make good use of their combined memory.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 10 / 21

Performance of Parallel Algorithm 1 – Measured

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

number of processors

sp
ee

d
up

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 11 / 21

Parallel Algorithm 2 (illustrated)
A B

4

3

4

1

2

1

4

3

2

2

3

1

4

2

3

1

4

1

2

3

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 12 / 21

Parallel Algorithm 2 (code sketch)

Each processor first computes what it can with its rows from A and
B.

I It can only use N/P of its columns of its block from A.
I It uses its entire block from B.
I We’ve now computed one of P matrices, where the sum of all of

these matrices is the matrix AB.
We view the processors as being arranged in a ring,

I Each processor forwards its block of B to the next processor in the
ring.

I Each processor computes an new partial product of AB and adds it
to what it had from the previous step.

I This process continues until every block of B has been used by
every processor.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 13 / 21

Algorithm 2, Erlang

par matrix mult2(ProcList, MyIndex, MyBlockA, MyBlockB) ->
NProcs = length(ProcList),
NRowsA = length(A),
NColsB = length(hd(B)), % assume length(B) > 0
ABlocks0 = rotate(MyIndex, blockify cols(A, NProcs)),
PList = rotate(NProcs - (MyIndex-1),

lists:reverse(ProcList)),
helper(ProcList, ABlocks, MyBlockB,

matrix:zeros(NRowsA, NColsB)).

helper([P head | P tail], [A head | A tail], BBlock, Accum) ->
if A tail == [] -> ok;

true -> P head ! BBlock
end,
Accum2 = matrix:add(Accum, matrix:mult(A head, BBlock)),
if A tail == [] -> Accum2;

true ->
helper(P tail, A tail,

receive BBlock2 -> BBlock2 end, Accum2)
end.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 14 / 21

Algorithm 2 – notes on the Erlang code

blockify cols(A, NProcs) produces a list of NProcs
matrices.

I Each matrix has NRowsA rows and NColsA columns,
I where NColsA is the number of columns of MyBlockA.
I Let A(MyIndex, j) denote the j th such block.

rotate(N, List) ->
{L1, L2} = lists:split(N, List),
L2 ++ L1.

The algorithm is based on the formula:

C(MyIndex, :) =
NProcs∑

j=1

A(MyIndex, j) ∗ B(j , :)

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 15 / 21

Performance of Parallel Algorithm 2

CPU operations: Same as for parallel algorithm 1: total time:
O(N3/P).
Communication: Same as for parallel algorithm 1: O(N2 + P).

I With algorithm 1, each processor sent the same message to P − 1
different processors.

I With algorithm 2, for each processor, there is one destination to
which it sends P − 1 different messages.

I Thus, algorithm 2 can work efficiently with simpler interconnect
networks.

Memory: Each process needs O(N2/P) storage for its block of A,
its current block of B, and its block of the result.

I Note: each processor might hold onto its original block of B so we
still have the blocks of B available at the expected processors for
future operations.

Do the memory savings matter?

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 16 / 21

Bad performance, pass it on
Consider what happens with algorithm 2 if one processor, Pslow
takes a bit longer than the others one of the times its doing a block
multiply.

I Pslow will send it’s block from B to its neighbour a bit later than it
would have otherwise.

I Even if the neighbour had finished its previous computation on time,
it won’t be able to start the next one until it gets the block of B from
Pslow .

I Thus, for the next block computation, both Pslow and its neighbour
will be late, even if both of them do their next block computation in
the usual time.

I In other words, tardiness propagates.
Solution: forward your block to you neighbour before you use it to
perform a block computation.

I This overlaps computation with communication, generally a good
idea.

I We could send two or more blocks ahead if needed to compensate
for communication delays and variation in compute times.

I This is a way to save time by using more memory.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 17 / 21

Even less communication

In the previous algorithms, computate time grows as N3/P, while
communication time goes as (N2 + P).
Thus, if N is big enough, computation time will dominate
communication time.
There’s not much we can do to reduce the number of
computations required (I’ll ignore Strassen’s algorithm, etc. for
simplicity).
If we can use less communication, then we won’t need our
matrices to be as huge to benefit from parallel computation.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 18 / 21

Summary

Matrix multiplication is well-suited for a parallel implementation.
Need to consider communication costs.
Connection of theory with actual run time is pretty good:

I But the matrices have to be big enough to amortize the
communication costs.

In future lectures, may look an how to further reduce
communication.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 19 / 21

Preview
September 26: Superscalars and compilers

Reading: The MIPS R10000 Superscalar Microprocessor (Yeager)
short lecture: ends at 4:30

Mini-assignment: Mini-assignment 3 due

October 1: Shared Memory Multiprocessors
Reading: Lin & Snyder, chapter 2, pp. 30–43.
Homework: Homework 3 goes out

October 3: Message Passing Multiprocessors

October 8: Models of Parallel Computation
Reading: Lin & Snyder, chapter 2, pp. 43–59.

October 10: Peril-L, Reduce, and Scan
Reading: Lin & Snyder, chapter 3, pp. 112–125.

October 13: Work allocation
Reading: Lin & Snyder, chapter 3, pp. 125–142.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 20 / 21

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491460&tag=1

List Comprehensions, one more practice problem

pythag(ListX, ListY) -> ListP.
ListX and ListY are lists of integers. ListP consists of all tuples
{X, Y} Y is an element of ListY, and

√
X2 + Y2 is an integer. where

X is an element of ListX, Y is an element of ListY, and X ≤ Y is an
integer. Here’s a function that tests whether or not an integer is a
perfect square:

is square(N, [Lo, Hi]) ->
Mid = (Lo + Hi) div 2,
MidSq = Mid*Mid,
if

(MidSq == N) -> true;
(Lo >= Hi) -> false;
(MidSq > N) -> is square(N, [Lo, Mid]);
(MidSq < N) -> is square(N, [Mid+1, Hi])

end.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 24, 2013 21 / 21

