Matrix Multiplication

Mark Greenstreet

CpSc 418 - Sept. 24, 2013

Outline:

- Sequential Matrix Multiplication
- Parallel Implementations, Performance, and Trade-Offs.

Objectives

Apply concepts of algorithm analysis, parallelization, overhead, and performance measurement to a real problem.

- Design sequential and parallel algorithms for matrix multiplication.
- Analyse algorithms and measure performance.
- Identify bottlenecks and refine algorithms.

Matrix representation in Erlang

- I'll represent a matrix as a list of lists.
- For example, the matrix

$$
\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
1 & 4 & 9 & 16 \\
1 & 8 & 27 & 64
\end{array}\right]
$$

is represented by the Erlang nested-list:

$$
\begin{aligned}
& \text { [}[1,2,3,4] \\
& {[1,4,9,16]} \\
& {[1,8,27,64] \text {] }}
\end{aligned}
$$

- The empty matrix is [].
- This means my representation can't distinguish between a 2×0 matrix, a 0×4 matrix, and a 0×0 matrix.
- That's OK. This package is to show some simple examples.
- I'm not claiming it's for advanced scientific computing.

Sequential Matrix Multiplication

```
mult(A, B) ->
    BT = transpose(B),
    lists:map(
        fun(Row_of_A) ->
            lists:map(
            fun(Col_of_B) ->
                        dot_prod(Row_of_A, Col_of_B)
            end, BT)
        end, A).
dot_prod(V1, V2) ->
    lists:foldl(
    fun({X,Y},Sum) -> Sum + X*Y end,
    0, lists:zip(V1, V2)).
```

- Next, we'll use list comprehensions to get a more succinct version.

Matrix Multiplication, with comprehensions

```
mult(A, B) ->
    BT = transpose(B),
    [ [ dot_prod(RowA, ColB) || ColB <- BT ] || RowA <- A].
transpose([]) -> []; % special case for empty matrices
transpose([[]|_]) -> [] ; % bottom of recursion, the columns are empty
transpose(M) ->
    [ [H || [H | _T] <- M ] % create a row from the first column of M
        | transpose([ T || [_H | T] <- M ]) % now, transpose what's left
    ] .
```

- [Expr (X) || X <- List] is equivalent to lists:map(fun(X) -> Expr(X) end, List).
- And you can do much more with comprhensions.
- See slides ?? and 21 for examples.

Performance - Modeled

- Really simple, operation counts:
- Multiplications: n_rows_a *n_cols_b $*$ n_cols_a.
- Additions: n_rows_a $*$ n_cols_b $*\left(\mathrm{n} _c o l s _a-1\right)$.
- Memory-reads: $2 * \#$ Multiplications.
- Memory-writes: n_rows_a*n_cols_b.
- Time is $O\left(n _r o w s _a * n _c o l s _b *\left(n _c o l s _a-1\right)\right)$, If both matrices are $N \times N$, then its $O\left(N^{3}\right)$.
- But, memory access can be terrible.
- For example, let matrices a and b be 1000×1000.
- Assume a processor with a 4M L2-cache (final cache), 32 byte-cache lines, and a 200 cycle stall for main memory accesses.
- Observe that a row of matrix a and a column of b fit in the cache. (a total of $\sim 40 \mathrm{~K}$ bytes).
- But, all of b does not fit in the cache (that's 8 Mbytes).
- So, on every fourth pass through the inner loop, every read from b is a cache miss!
- The cache miss time would dominate everything else.
- This is why there are carefully tuned numerical libraries.

Performance - Measured

- Cubic of best fit: $T=\left(107 N^{3}+134 N^{2}+173 N-32\right) \mathrm{ns}$.
- Fit to first six data points.
- Cache misses effects are visible, for $\mathrm{N}=1000$:
- model predicts $T=107$ seconds,
- but the measured value is $T=142$ seconds.

Parallel Algorithm 1

Parallel Algorithm 1 in Erlang

\% mult (W, Key, Key1, Key2) - create a matrix associated with Key
\% that is the product of the matrices associated with Key1 and Key2.
mult1(W, Key, Key1, Key2) ->
Nproc = workers:nworkers(W),
workers:update(W, Key, fun(PS, I) ->
$A=$ workers:get $(P S$, Key 1$)$, $\%$ my rows of A
$B=$ workers: get (PS, Key2), \% my rows of B
[WW ! \{B, I\} || WW <- W], \% send my rows of B to everyone
B_full = lists:append ($\%$ receive B from everyone [receive $\{B B, J\}->B B$ end
|| $\mathrm{J}<-$ lists:seq(1, Nproc)]),
matrix:mult(A, B_full) \% compute my part of the product end
).

Performance of Parallel Algorithm 1 - Modeled

- CPU operations: same total number of multiplies and adds, but distributed around P processors. Total time: $O\left(N^{3} / P\right)$.
- Communication: Each processors sends (and receives) P-1 messages of size N^{2} / P. If time to send a message is $t_{0}+t_{1} * M$ where M is the size of the message, then the communication time is

$$
\begin{aligned}
(P-1)\left(t_{0}+t_{1} \frac{N^{2}}{P}\right) & =O\left(N^{2}+P\right), & & \text { but, beware of large constants } \\
& =O\left(N^{2}\right), & & N^{2}>P
\end{aligned}
$$

- Memory: Each process needs $O\left(N^{2} / P\right)$ storage for its block of A and the result. It also needs $O\left(N^{2}\right)$ to hold all of B.
- The simple algorithm divides the computation across all processors, but it doesn't make good use of their combined memory.

Performance of Parallel Algorithm 1 - Measured

Parallel Algorithm 2 (illustrated)

A
B

Parallel Algorithm 2 (code sketch)

- Each processor first computes what it can with its rows from A and B.
- It can only use N / P of its columns of its block from A.
- It uses its entire block from B.
- We've now computed one of P matrices, where the sum of all of these matrices is the matrix $A B$.
- We view the processors as being arranged in a ring,
- Each processor forwards its block of B to the next processor in the ring.
- Each processor computes an new partial product of $A B$ and adds it to what it had from the previous step.
- This process continues until every block of B has been used by every processor.

Algorithm 2, Erlang

```
par_matrix_mult2(ProcList, MyIndex, MyBlockA, MyBlockB) ->
    NProcs = length(ProcList),
    NRowsA = length(A),
    NColsB = length(hd(B)), % assume length(B) > 0
    ABlocks0 = rotate(MyIndex, blockify_cols(A, NProcs)),
    PList = rotate(NProcs - (MyIndex-1),
                                    lists:reverse(ProcList)),
    helper(ProcList, ABlocks, MyBlockB,
        matrix:zeros(NRowsA, NColsB)).
helper([P_head | P_tail], [A_head | A_tail], BBlock, Accum) ->
    if A_tail == [] -> ok;
        true -> P_head ! BBlock
    end,
    Accum2 = matrix:add(Accum, matrix:mult(A_head, BBlock)),
    if A_tail == [] -> Accum2;
        true ->
            helper(P_tail, A_tail,
    receive BBlock2 -> BBlock2 end, Accum2)
    end.
```


Algorithm 2 - notes on the Erlang code

- blockify_cols(A, NProcs) produces a list of NProcs matrices.
- Each matrix has NRowsA rows and NColsA columns,
- where NColsA is the number of columns of MyBlockA.
- Let A (My Index, j) denote the $j^{\text {th }}$ such block.
- rotate(N, List) ->

$$
\begin{aligned}
& \{\text { L1, L2 }\}=\text { lists:split(N, List), } \\
& \text { L2 ++ L1. }
\end{aligned}
$$

- The algorithm is based on the formula:

$$
C(\text { My Index },:)=\sum_{j=1}^{\text {NProcs }} A(\text { My Index }, j) * B(j,:)
$$

Performance of Parallel Algorithm 2

- CPU operations: Same as for parallel algorithm 1: total time: $O\left(N^{3} / P\right)$.
- Communication: Same as for parallel algorithm 1: $O\left(N^{2}+P\right)$.
- With algorithm 1, each processor sent the same message to $P-1$ different processors.
- With algorithm 2, for each processor, there is one destination to which it sends $P-1$ different messages.
- Thus, algorithm 2 can work efficiently with simpler interconnect networks.
- Memory: Each process needs $O\left(N^{2} / P\right)$ storage for its block of A, its current block of B, and its block of the result.
- Note: each processor might hold onto its original block of B so we still have the blocks of B available at the expected processors for future operations.
- Do the memory savings matter?

Bad performance, pass it on

- Consider what happens with algorithm 2 if one processor, $P_{\text {slow }}$ takes a bit longer than the others one of the times its doing a block multiply.
- $P_{\text {slow }}$ will send it's block from B to its neighbour a bit later than it would have otherwise.
- Even if the neighbour had finished its previous computation on time, it won't be able to start the next one until it gets the block of B from $P_{\text {slow }}$.
- Thus, for the next block computation, both $P_{\text {slow }}$ and its neighbour will be late, even if both of them do their next block computation in the usual time.
- In other words, tardiness propagates.
- Solution: forward your block to you neighbour before you use it to perform a block computation.
- This overlaps computation with communication, generally a good idea.
- We could send two or more blocks ahead if needed to compensate for communication delays and variation in compute times.
- This is a way to save time by using more memory.

Even less communication

- In the previous algorithms, computate time grows as N^{3} / P, while communication time goes as $\left(N^{2}+P\right)$.
- Thus, if N is big enough, computation time will dominate communication time.
- There's not much we can do to reduce the number of computations required (l'll ignore Strassen's algorithm, etc. for simplicity).
- If we can use less communication, then we won't need our matrices to be as huge to benefit from parallel computation.

Summary

- Matrix multiplication is well-suited for a parallel implementation.
- Need to consider communication costs.
- Connection of theory with actual run time is pretty good:
- But the matrices have to be big enough to amortize the communication costs.
- In future lectures, may look an how to further reduce communication.

Preview

September 26: Superscalars and compilers
Reading: The MIPS R10000 Superscalar Microprocessor (Yeager) short lecture: ends at 4:30
Mini-assignment: Mini-assignment 3 due
October 1: Shared Memory Multiprocessors
Reading: Lin \& Snyder, chapter 2, pp. 30-43.Homework: Homework 3 goes out
October 3: Message Passing Multiprocessors
October 8: Models of Parallel Computation
Reading: Lin \& Snyder, chapter 2, pp. 43-59.
October 10: Peril-L, Reduce, and Scan
Reading: Lin \& Snyder, chapter 3, pp. 112-125.
October 13: Work allocation
Reading: Lin \& Snyder, chapter 3, pp. 125-142.

List Comprehensions, one more practice problem

pythag(ListX, ListY) -> ListP.
ListX and Listy are lists of integers. ListP consists of all tuples $\{X, Y\} Y$ is an element of List Y, and $\sqrt{X^{2}+Y^{2}}$ is an integer. where X is an element of List X, Y is an element of List Y, and $X \leq Y$ is an integer. Here's a function that tests whether or not an integer is a perfect square:

```
is_square(N, [LO, Hi]) ->
    Mid = (Lo + Hi) div 2,
    MidSq = Mid*Mid,
    if
        (MidSq == N) -> true;
        (Lo >= Hi) -> false;
        (MidSq > N) -> is_square(N, [Lo, Mid]);
        (MidSq < N) -> is_square(N, [Mid+1, Hi])
    end.
```

