
Quantifying Performance

Mark Greenstreet

CpSc 418 – Sept. 19, 2013

Outline:
Dependencies
Granularity and Locality
Performance and Speed-up
These slides are rather sparse.

I I’d like to make them more complete, but I won’t make any promises
of when I’ll have them finished.

I They are based on Lin & Snyder, Chapter 3, pp. 73–85.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 1 / 21

Dependencies

RAW – Read-After-Write
I The value of a variable must be written before it can be used.

WAR – Write-After-Read
I The value of a variable must not be over written before all reads of

its current value have completed.
I This is a false dependency – it can be eliminated by using more

memory.
Write-After-Write

I The last write to a variable according to the code block must be the
last one in execution so we leave the block with the right values for
variables. of its current value have completed.

I This is another kind of false dependency.
Control

I Outcomes of branches must be determined so we can execute the
right code blocks.

I These can be mitigated with speculation

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 2 / 21

Fine-Grain Example: Matrix multiplication

for(i = 0; i < N; i++) {
for(j = 0; j < N; j++) {

sum = 0.0;
for(k = 0; k < N; k++)

sum += a[i,k] * b[k,j]
} }

Examples of each kind of dependency:
RAW?
WAR?
WAW?
Control?

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 3 / 21

Coarse-Grain: Matrix-Multiplication by blocks

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 4 / 21

Granularity

Definitions:
I Fine-grained parallelism performs a small number of operations

between communication actions.
I Coarse-grained parallelism performs large amounts of computation

between communication actions.
Application:

I If communication is expensive, then coarse-grained approaches are
preferable.

F If there is an OS level context switch involved, make it coarse-grained.
I Fast, low-overhead communication favors finer grained parallelism

F Dedicated hardware.
F GPUs.

I If the time to complete tasks is hard to predict, that can favor using
a finer grain for parallelism.

F Idle processors can work on small tasks while busy processors finish
up big ones.

F If we’re lucky.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 5 / 21

Locality

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 6 / 21

Speed-up, again

Measures of performance: latency, throughput, and FLOPS
Sensitivity to technology
Superlinear speedup

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 7 / 21

Scalable Speed-up

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 8 / 21

Let’s write some code

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 9 / 21

List Comprehensions
Basic version: [Expr || X <- List , etc.]

I Expr is evaluated for each element, X, of List, to produce a list.
I Example:

1> [X*X || X <- lists:seq(1, 5)].
[1,4,9,16,25]

A list comprehension can apply to multiple lists:
I Example:

2> [X*X + Y || X <- lists:seq(1, 5), Y <- [1, 2]].
[2,3,5,6,10,11,17,18,26,27].

I Note the nesting:
for each First Comprehension Variable

for each Second Comprehension Variable
Expr

A list comprehension can have filters
I Example:

3> [X*X || X <- lists:seq(1, 5), (X rem 2) == 1].
[1,9,25]

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 10 / 21

Two Implementations of QuickSort
Implementation without list comprehensions:

qsort(List) -> qsort(List, []).

qsort([X], Suffix) -> [X | Suffix];
qsort([Pivot | T], Suffix) ->
{Lo, Hi} = lists:partition(fun(X) -> X < Pivot end, T),
qsort(Lo, [Pivot | qsort(Hi, Suffix)]);

qsort([], Suffix) -> Suffix.

Implementation with list comprehensions:
qsortc([Pivot|T]) ->

qsortc([X || X <- T, X < Pivot]) ++ [Pivot] ++
qsortc([X || X <- T, X >= Pivot]);
qsortc([]) -> [].

Which is faster?
I The list comprehension version traverses the list twice for each
Pivot.

I The list comprehension version uses list concatenation which has a
reputation for being slow (when it copies its left operand).

I Let’s try it.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 11 / 21

The Quickest QuickSort

The test set-up:

time(N) ->
R = misc:rlist(N, 1000000),
TC = time it:t(fun() -> qsortc(R) end),
TQ = time it:t(fun() -> qsort(R) end),
io:format("N = ∼b∼n", [N]),
io:format(

" with comprehensions: mean = ∼12.6e, std = ∼12.6e∼n",
[element(2, lists:keyfind(’mean’, 1, TC)),

element(2, lists:keyfind(’std’, 1, TC))]),
io:format(

" plain quicksort: mean = ∼12.6e, std = ∼12.6e∼n",
[element(2, lists:keyfind(’mean’, 1, TQ)),

element(2, lists:keyfind(’std’, 1, TQ))]).
time() -> time(10000).

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 12 / 21

The Quickest QuickSort

Run the test:
4> sort:time().
N = 10000
with comprehensions: mean = 8.359e-3, std = 3.385e-4
plain quicksort: mean = 9.508e-3, std = 4.236e-4

ok

The list comprehension version is faster!
I The compiler must be doing some reasonably good optimizations.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 12 / 21

I demand a rematch!
lists:partition called the comparator for each element.
I’ll write quicksort with my own partition function:

qsortp(List) -> qsortp(List, []).

qsortp([X], Suffix) -> [X | Suffix];
qsortp([Pivot | T], Suffix) ->
{Lo, Hi} = partition(Pivot, T, {[], []}),
qsortp(Lo, [Pivot | qsortp(Hi, Suffix)]);

qsortp([], Suffix) -> Suffix.

partition(Pivot, [], {Lo, Hi}) -> {Lo, Hi};
partition(Pivot, [H | T], {Lo, Hi}) ->

if H < Pivot -> partition(Pivot, T, {[H | Lo], Hi});
true -> partition(Pivot, T, {Lo, [H | Hi]})

end.

Let’s try it.
with comprehensions: mean = 9.180e-3, std = 5.090-4
plain quicksort: mean = 6.372e-3, std = 4.920-4

Now, the hand-coded version is ∼45% faster.
I But the list-comprehension version is easier to write and read.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 13 / 21

Parallel Count3’s (version 1)

sum

root process

worker 1

worker 2

worker 3

worker 4

done

create random

lists.

send acks

to root

each worker

counts its 3’s

and sends tally

to root.

root

performs

final

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 14 / 21

Parallel Count3’s (the code)

count3s(W, Key) ->
lists:sum(workers:retrieve(W,

fun(ProcState) ->
case workers:get(ProcState, Key) of

undefined -> failed;
X -> count3s:count3s(X)

end
end)).

test(N, NWorkers) ->
W = workers:create(NWorkers),
rlist(W, N, 10, ’R’), % make random lists
workers:retrieve(W, fun() -> ok end), % sync
N3S = count3s(W, ’R’), % count the 3’s
workers:reap(W), % clean-up
N3S.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 15 / 21

The Workers Module

Create and manage a pools of processes.
workers:create(N) – create a pool of N worker processes.
workers:reap(W) – terminate the processes in pool W.
workers:broadcast(W, F) – each worker in W executes
function F.

I workers:retrieve(W, Key) – retrieve the values associated
with Key in each of the worker processes, and return these values
as a list.

F workers:retrieve(W, Fun, Args) – retrieves the value
obtained by executing Fun in each process with the corresponding
element from Args.

F workers:retrieve(W, Fun) – retrieves the value obtained by
executing Fun in each process without any arguments.

see the on-line documentation for more details.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 16 / 21

Performance

0 200K 400K 600K 800K 1M
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

input size

tim
e

(s
ec

.)

Nproc=1
Nproc=2, speed up= 1.8
Nproc=4, speed up= 3.0
Nproc=8, speed up= 5.7

0 10K 20K 30K 40K 50K
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

input size

tim
e

(s
ec

)

Parallel execution: 8 processes on quad-core i7

Speed-up calculated for N = 1M point (of course).
The parallel version is faster, but

I there’s a lot of overhead!

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 17 / 21

The Overhead

total

donestart

160 170 (microseconds)

time

150110 120 130 14060 70 80 90 1005010 20 30 400

root process

worker 1

worker 2

worker 3

worker 4

request counts

from workers

workers counting

send results back

to root.

root computes

The biggest overhead is the thread scheduler (OSX).
Many cores are idle while there are threads waiting for work.
The scheduler is trying to avoid unneccessary thread migration.
Similar results when running under linux.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 18 / 21

The Reduce Operator

Count3’s is a simple example of a common pattern in parallel
computation: reduce.

I A large vector, array, or other data structure is distributed across
many workers.

I Each worker computes a “tally” of its part of the data.
I The tally values are combined using some associative operator to

produce the final result.
Examples:

I Compute the sum of the elements of an array.
I Find the largest element in an array.
I Find the largest element in an array and its index.
I Find the first occurrence of Key in an array.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 19 / 21

Reduce

combine

startP0

P1

P2

P3

P4

P5

P6

P7

done

local tally combine combine

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 20 / 21

Summary

Library modules for parallel programming with Erlang
I time it: measure elapsed time for computations.
I workers: create and use pools of worker processes.

Example: count3s
I Can you explain the observed performance loss using the kinds of

losses described in the September 18 lecture?

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 19, 2013 21 / 21

