
Performance Loss

Mark Greenstreet

CpSc 418 – Sept. 17, 2013

Outline:
Measuring Performance
Count 3’s performance

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 1 / 41



Where are we?

finish

Parallelandia

LYSE

start

We are
here

emergingperformance

architecture

paradigms

algorithms

HW & SW

We’ve completed a quick introduction of Erlang programming.
Now, we will look at performance:
I How to measure it.
I Major performance limiters and how to identify them.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 2 / 41



Objectives

Understand key measures of performance
I Time: latency vs. throughput
I Time: wall-clock vs. operation count
I Speed-up: slide 5

Understand key performance losses for parallel programs:
I Overhead: Extra “work” in the parallel version
I Inherently sequential code: Amdahl’s law
I Idle processors
I Resource contention

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 3 / 41

slide:measure
slide:time
slide:overhead
slide:nonpar
slide:amdahl
slide:idle
slide:contention


Measuring Performance

The main motivation for parallel programming is performance
I Time: make a program run faster.
I Space: allow a program to run with more memory.

To make a program run faster, we need to know how fast it is
running.
There are many possible measures:
I Latency: time from starting a task until it completes.
I Throughput: the rate at which tasks are completed.
I Key observation:

throughput =
1

latency
, sequential programming

throughput ≥ 1
latency

, parallel programming

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 4 / 41



Speed-Up

Simple definition:

speed up =
time(sequential execution)

time(parallel execution)

But beware of the spin:
I Is “time” latency or throughput?
I How big is the problem?
I What is the sequential version:

2 The parallel code run on one processor?
2 The fastest possible sequential implementation?
2 Something else?

More practically, how do we measure time?

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 5 / 41



Time complexity

What is the time complexity of sorting?
I What are you counting?
I Why do you care?

What is the time complexity of matrix multiplication?
I What are you counting?
I Why do you care?

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 6 / 41



Big-O and Wall-Clock Time
In our algorithms classes, we count “operations” because we have some
belief that they have something to do with how long the actual program
will take to execute.
I Or maybe not. Some would argue that we count “operations”

because it allows us to use nifty techniques from discrete math.
I I’ll take the position that the discrete math is nifty because it tells us

something useful about what our software will do.
In our architecture classes, we got the formula:

time =
(#inst. executed) ∗ (cycles/instruction)

clock frequency

The approach in algorithms class of counting comparisons or
multiplications, etc., is based on the idea that everything else is done in
proportion to these operations.
BUT, in parallel programming, we can find that a communication
between processes can take 1000 times longer than a comparison or
multiplication.
I This may not matter if you’re willing to ignore “constant factors.”
I In practice, factors of 1000 are too big to ignore.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 7 / 41



Causes of Performance Loss

Ideally, we would like a parallel program to run P times faster than
the sequential version when run on P processors.
In practice, this rarely happens because of:
I Overhead: work that the parallel program has to do that isn’t

needed in the sequential program.
I Non-parallelizable code: something that has to be done

sequentially.
I Idle processors: There’s work to do, but some processor are

waiting for something so before they can work on it.
I Resource contention: Too many processors overloading a

limited resource.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 8 / 41



Overhead
Overhead: work that the parallel program has to do that isn’t needed in
the sequential program.

Communication:
I The processes (or threads) of a parallel program need to

communicate.
I A sequential program has no interprocess communication.

Synchronization.
I The processes (or threads) of a parallel program need to

coordinate.
I This can be to avoid interference, or to ensure that a result is

ready before it’s used, etc.
I Sequential programs have a completely specified order of

execution: no synchronization needed.
Computation.
I Recomputing a result is often cheaper than sending it.

Memory Overhead.
I Each process may have its own copy of a data structure.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 9 / 41

slide:over.communication
slide:over.synchronization
slide:over.compute
slide:over.memory


Communication Overhead

total

leaf leaf leaf

tallytally tallytally

root

mid mid

leaf:

create list of N/P elements
send ’ready’ to parent
wait for ’go’
count 3s in the list
send total to parent

mid:

wait for tallies

wait for readies:

wait for go:
send gos to children

send ready to parent

send total to parent

root:

send gos

wait for totals

wait for readies
start timer

compute grand total
end timer
report results

total

leaf

In a parallel program, data must be sent between processors.
This isn’t a part of the sequential program.
The time to send and receive data is overhead.
Communication overhead occurs with both shared-memory and
message passing machines and programs.
Example: Count 3s
I Communication between processes adds time to execution.
I The sequential program doesn’t have this overhead.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 10 / 41



Communication with shared-memory

In a shared memory architecture:
I Each core has it’s own cache.
I The caches communicate to make sure that all references

from different cores to the same address look like their is one,
common memory.

I It takes longer to access data from a remote cache than from
the local cache. This creates overhead.

False sharing can create communication overhead even when
there is no logical sharing of data.
I This occurs if two processors repeatedly modify different

locations on the same cache line.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 11 / 41



Communication overhead with message passing
The time to transmit the message through the network.
There is also a CPU overhead: the time set up the transmission
and the time to receive the message.
The context switches between the parallel application and the
operating system adds even more time.
Note that many of these overheads can be reduced if the sender
and receiver are different threads of the same process running on
the same CPU.
I This has led to SMP implementations of Erlang, MPI, and

other message passing parallel programming frameworks.
I The overheads for message passing on an SMP can be very

close to those of a program that explicitly uses shared
memory.

I This allows the programmer to have one parallel programming
model for both threads on a multi-core processor and for
multiple processes on different machines in a cluster.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 12 / 41



Communication overhead: an example

It’s hard to measure the communication overhead for Count 3s in
Erlang.

Each process sends and receives 2–6 messages.
The thread scheduler avoids parallel execution!
I It assumes that if you have multiple threads, they are GUI

event handlers or similar, and that you probably aren’t really
trying to make your code parallel.

I It waits until multiple threads have been runable for up to a
few milliseconds before using multiple cores.

I I’m pretty sure this scheduling policy is part of
linux/OSX/Windows.

I I should write the pthreads code to measure this.
For count 3s, we just see the scheduler overhead, not the
communication time.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 13 / 41



Erlang process start-up delays (experiment design)

main(P, N) spawns P processes, each of which does O(N)
work.
Processes send a value back to main.
Use time it:log(FormatString, Args) to log key events.
Print the event log at the end.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 14 / 41



Erlang process start-up delays (the code)

main(N, P) ->
Log1 = time it:log("main: starting"),
{ W, Log2} = start workers(N, P),
{ V, Log3} = get results( P),
Log4 = get logs(P),
time it:print log([Log1, Log2, Log3, Log4]).

worker(Ppid, N, MyIndex) ->
Log1 = time it:log("worker ∼b: starting", [MyIndex]),
V = busy work(N),
Log2 = time it:log("worker ∼b: result ready to send",

[MyIndex]),
Ppid ! {result, MyIndex, V},
Log3 = time it:log("worker ∼b: done", [MyIndex]),
Ppid ! {event log, MyIndex, [Log1, Log2, Log3]}.

For the complete code, see
http:www.ugrad.cs.ubc.ca/˜cs418/2013-1/lecture/09.17/src/msg1.erl

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 15 / 41

http:www.ugrad.cs.ubc.ca/~cs418/2013-1/lecture/09.17/src/msg1.erl


Erlang process start-up delays (execution)

> msg1:main(4, 100000).
0 <0.35.0>: main: starting

1.10000e-5 <0.35.0>: main: just spawned worker 4
1.40000e-5 <0.35.0>: main: just spawned worker 3
1.70000e-5 <0.35.0>: main: just spawned worker 2
2.00000e-5 <0.35.0>: main: just spawned worker 1
2.80000e-5 <0.10174.0>: worker 4: starting
3.28000e-4 <0.10175.0>: worker 3: starting
6.28000e-4 <0.10176.0>: worker 2: starting
9.29000e-4 <0.10177.0>: worker 1: starting
1.77940e-2 <0.10174.0>: worker 4: result ready to send
1.77990e-2 <0.10174.0>: worker 4: done
1.78080e-2 <0.35.0>: main: received result from worker 4
1.94000e-2 <0.10175.0>: worker 3: result ready to send
...

Observe long time for process start-up:

No process starts until after main has spawned all children
About 0.3ms delay between starting consecutive processes.
Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 16 / 41



Measure message passing overhead (experiment
design)

main(P, N work, N rounds) spawns P worker processes:
I Each process performs N rounds of:

2 Perform O(N work) work.
2 Send a message to another worker processes.

I Our code ensures:
2 Each process receives one message per round;
2 No process sends a message to itself;
2 Different permutations for different rounds.

Measure the time for different values for P, N work and
N rounds

For example, by comparing two runs where each process does the
same total amount of local work but sends and receives different
numbers of messages, we can determine the time per message.
Code: next slide. Or download from:

http:www.ugrad.cs.ubc.ca/˜cs418/2013-1/lecture/09.17/src/msg2.erl

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 17 / 41

http:www.ugrad.cs.ubc.ca/~cs418/2013-1/lecture/09.17/src/msg2.erl


Erlang message passing overhead (the code)

main(P, N work, N rounds) ->
MyPid = self(),
One to P = lists:seq(1, P),
I dst = make dst lists(P, 17),
Args = [[MyPid, I, N work, N rounds] || I <- One to P],
{W, Log} = start workers(Args),
P dst = [ [ lists:nth(I, W) || I <- D ] || D <- I dst],
T0 = now(),
[ CPid ! {busy busy busy, DstList}
|| {CPid, DstList} <- lists:zip(W, P dst) ],

{ V, Log2} = get results(P),
T1 = now(),
io:format("elapsed time = ∼12.6e∼n",

[1.0e-6*timer:now diff(T1, T0)]).

worker(Ppid, MyIndex, N work, N rounds) ->
receive {busy busy busy, DstList} -> ok end,
V = busy work(N work, N rounds, DstList),
Ppid ! {result, MyIndex, V}.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 18 / 41



Erlang message passing overhead (the results)

P N work N rounds elapsed time
4 100 1000 28.9ms
4 50 2000 30.7ms
8 100 1000 38.5ms
8 50 2000 41.2ms

48 100 1000 131.8ms
48 50 2000 144.9ms

Examples run on quad-core, two-way multithreaded, 2GHz, Intel Core
i7 processor.
Each value is median from five runs.

4 processes: time/(message/core) = 1.80µs.
8 processes: time/(message/core) = 1.35µs.

48 processes: time/(message/core) = 1.18µs.
Messages take 1− 2µs. Time decreases with more processes!

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 19 / 41



Erlang message passing overhead (remarks)

The total number of messages sent (and received) when running the code with P
processes and N rounds rounds is P · N rounds. The total amount of sequential
work is P · N roundsN work. Thus, if we have two runs where:

run 1 has P processes, each performing N rounds of “work” with N work per
round; and

run 2 has P processes, each performing 2N rounds of “work” with 1
2N work,

then run 1 and run 2 do the same amount of sequential work, but run 2 sends and
receives P · N rounds more messages than run 1. Let T1 and T2 denote the times for
executing run 1 and run 2 respectively.
We ran this code on a machine with Q cores (where Q = 4 for the results reported on
the previous slide). This means that each core handles P · N rounds/Q more
messages for run 2 than it did for run 1 – where “handling a message” is the total of
the send and receive time. To get the time that it takes a core to handle one message,
I divided the time difference by the number of messages per core:

Tmsg =
Q(T2 − T1)

P · N rounds

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 20 / 41



Synchronization Overhead

Parallel processes must coordinate their operations.
I Example: access to shared data structures.
I Example: writing to a file.

For shared-memory programs (e.g. pthreads or Java
threads, there are explicit locks or other synchronization
mechanisms.
For message passing (e.g. Erlang or MPI), synchronization is
accomplished by communication.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 21 / 41



Need a lock (code)

main() ->
MyPid = self(),
C1 = spawn(fun() -> spin then print(MyPid, poem1(), 1) end),
C2 = spawn(fun() -> spin then print(MyPid, poem2(), 1) end),
msg1:busy work(random:uniform(8000)),
C1 ! (C2 ! go),
receive done -> receive done -> ok end end,

spin then print(PPid, Lock, Poetry, V) ->
receive

go -> print poem(Lock, Poetry), PPid ! done
after 0 ->

spin then print(PPid, Lock, Poetry, math:cos(V) + V)
end.

print poem([]) -> ok;
print poem([Hd | Tl]) -> io:format(Hd), print poem(Tl).

For the complete code, see
http:www.ugrad.cs.ubc.ca/˜cs418/2013-1/lecture/09.17/src/lock.erl

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 22 / 41

http:www.ugrad.cs.ubc.ca/~cs418/2013-1/lecture/09.17/src/lock.erl


Need a lock (execution)

Mary had a little lamb.
Twinkle, Twinkle, little star,
It’s fleece was white as snow.
How I wonder what you are.
And everywhere that Mary went,
Up above the world so high,
Her lamb was sure to go.
Like a diamond in the sky.

Twinkle, Twinkle, little star,
How I wonder what you are.

ok

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 23 / 41



Implementing a lock in Erlang

lock create() -> spawn(fun() -> unlocked() end).

unlocked() ->
receive
{lock, Pid} ->

Pid ! {locked, self()},
locked(Pid);

{unlock, } -> error("bad unlock: not locked");
exit -> ok

end.

locked(Pid) ->
receive
{unlock, Pid} -> unlocked();
{unlock, Imposter} ->

error(lists:flatten(io lib:format(
"bad unlock: attempted by ∼w; lock held by ∼w",
[Imposter, Pid])))

end.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 24 / 41



Computation Overhead

A parallel program may perform computation that is not done by the
sequential program.

Redundant computation: it’s faster to recompute the same thing
on each processor than to broadcast.
Algorithm: sometimes the fastest parallel algorithm is
fundamentally different than the fastest sequential one, and the
parallel one performs more operations.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 25 / 41



Sieve or Eratosthenes

To find all primes ≤ N:

1. Let MightBePrime = [2, 3, ..., N].
2. Let KnownPrimes = [].
3. while(MightBePrime 6= []) do

% Loop invariant: KnownPrimes contains all primes less than the
% smallest element of MightBePrime, and MightBePrime
% is in ascending order. This ensure that the first element of
% MightBePrime is prime.

3.1. Let P = first element of MightBePrime.
3.2. Append P to KnownPrimes.
3.3. Delete all multiples of P from MightBePrime.
4. end

See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 26 / 41

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes


Prime-Sieve in Erlang

% primes(N): return a list of all primes ≤ N.
primes(N) when is integer(N) and (N < 2) -> [];
primes(N) when is integer(N) ->

do primes([], lists:seq(2, N)).

% invariants of do primes(Known, Maybe):
% All elements of Known are prime.
% No element of Maybe is divisible by any element of Known.
% lists:reverse(Known) ++ Maybe is an ascending list.
% Known ++ Maybe contains all primes ≤ N, where N is from p(N).
do primes(KnownPrimes, []) -> lists:reverse(KnownPrimes);
do primes(KnownPrimes, [P | Etc]) ->
do primes([P | KnownPrimes],

lists:filter(fun(E) -> (E rem P) /= 0 end, Etc)).

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 27 / 41



A More Efficient Sieve

If N is composite, then it has at least one prime factor that is at
most

√
N.

This means that once we’ve found a prime that is ≥
√

N, all
remaining elements of Maybe must be prime.
Revised code:
% primes(N): return a list of all primes ≤ N.
primes(N) when is integer(N) and (N < 2) -> [];
primes(N) when is integer(N) ->

do primes([], lists:seq(2, N), trunc(math:sqrt(N))).

do primes(KnownPrimes, [P | Etc], RootN)
when (P =< RootN) ->

do primes([P | KnownPrimes],
lists:filter(fun(E) -> (E rem P) /= 0 end, Etc), RootN);

do primes(KnownPrimes, Maybe, RootN) ->
lists:reverse(KnownPrimes, Maybe).

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 28 / 41



Prime-Sieve: Parallel Version

Main idea
I Find primes from 1 . . .

√
N.

I Divide
√

N + 1 . . .N evenly between processors.
I Have each processor find primes in its interval.

We can speed up this program by having each processor compute
the primes from 1 . . .

√
N?

I Why does doing extra computation make the code faster?

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 29 / 41



Memory Overhead

The total memory needed for P processes may be greater than that
needed by one process due to replicated data structures and code.

Example: the parallel sieve: each process had its own copy of the
first
√

N primes.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 30 / 41



Overhead: Summary
Overhead is loss of performance due to extra work that the parallel program
does that is not performed by the seqential version. This includes:

Communication: parallel processes need to exchange data. A
sequential program only has one process; so it doesn’t have this
overhead.
Synchronization: Parallel processes may need to synchronize to
guarantee that some operations (e.g. file writes) are performed in
a particular order. For a sequential program, this ordering is
provided by the program itself.
Extra Computation:
I Sometimes it is more efficient to repeat a computation in

several different processes to avoid communication overhead.
I Sometimes the best parallel algorithm is a different algorithm

than the sequential version and the parallel one performs
more operations.

Extra Memory: Data structures may be replicated in several
different processes.
Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 31 / 41



Non-parallelizable Code

Finding the length of a linked list:
int length=0;
for(List p = listHead; p != null; p = p->next)

length++;

I Must dereference each p->next before it can dereference
the next one.

I Could make more parallel by using a different data structure
to represent lists (some kind of skiplist, or tree, etc.)

Searching a binary tree
I Requires 2k processes to get factor of k speed-up.
I Not practical in most cases.
I Again, could consider using another data structure.

Interpretting a sequential program.
Finite state machines.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 32 / 41



Amdahl’s Law
Given a sequential program where
I fraction s of the execution time is inherently sequential.
I fraction 1− s of the execution time benefits perfectly from

speed-up.
The run-time on P processors is:

Tparallel = Tsequential ∗ (s + 1− s
P )

Consequences:
I Define

speed up =
Tsequential
Tparallel

I Speed-up on P processors is at most 1
s .

I Gene Amdahl argued in 1967 that this limit means that
parallel computers are only useful for a few special
applications where s is very small.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 33 / 41



Amdahl’s Law, 46 years later

Amdahl’s law is not a physical law.
Amdahl’s law is mathematical theorem:
I If Tparallel is

(
s + 1−s

P

)
Tsequential

I and speed up = Tsequential/Tparallel ,
I then for 0 < s ≤ 1, speed up ≤ 1

s .
Amdahl’s law is also an economic law:
I Amdahl’s law was formulated when CPUs were expensive.
I Today, CPUs are cheap

2 The cost of fabricating eight cores on a die is very little
more that the cost of fabricating one.

2 Computer cost is dominated by the rest of the system:
memory, disk, network, monitor, . . .

Amdahl’s law assumes a fixed problem size.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 34 / 41



Amdahl’s Law, 46 years later

Amdahl’s law is an economic law, not a physical law.
I Amdahl’s law was formulated when CPUs were expensive.
I Today, CPUs are cheap (see previous slide)

Amdahl’s law assumes a fixed problem size
I Many computations have s (sequential fraction) that

decreases as N (problem size) increases.
I Having lots of cheap CPUs available will

2 Change our ideas of what computations are easy and
which are hard.

2 Determine what the “killer-apps” will be in the next ten
years.
• Ten years from now, people will just take it for

granted that most new computer applications will
be parallel.

I Examples: see next slide

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 35 / 41



Amdahl’s Law, 46 years later

Amdahl’s law is an economic law, not a physical law.
Amdahl’s law assumes a fixed problem size
I Ten years from now, people will just take it for granted that

most new computer applications will be parallel.
I Examples:

2 Managing/searching/mining massive data sets.
2 Scientific computation.

• Note that most of the computation for animation
and rendering resembles scientific computation.
Computer games benefit tremendously from par-
allelism.
• Likewise for multimedia computing.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 36 / 41



Overhead: Idle CPUs

There are idle processors and work to do, but the processors can’t do
the work, because:

Load imbalance:
I A few processors get tasks that take longer than the others.
I This is especially a problem if it’s hard to determine how long

a task will take without running it.
Start-up and ending costs
I Some problems start with one process that spawns tasks for

other processors to execute.
I Initially, the other processors are idle, waiting for the first

processor to spawn tasks.
I A similar problem can occur collecting results at the end.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 37 / 41



Contention

Multiple processors need the same resource.
Disk access.
Main memory access with a SMP.
Network access with a cluster.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 38 / 41



Lecture Summary
Causes of Performance Loss in Parallel Programs

Overhead
I Communication, slide 10.
I Synchronization, slide 21.
I Computation, slide 25.
I Extra Memory, slide 30.

Other sources of performance loss
I Non-parallelizable code, slide 32
I Idle Processors, slide 37.
I Resource Contention, slide 38.

Quantifying speed-up, slide 5
I Throughput vs. Latency.

I speed up =
Tsequential

Tparallel
I Amdahl’s Law, slide 34.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 39 / 41



Review Questions

What is speed-up? Give an intuitive, English answer and a
mathematical formula.
What is Amdahl’s law? Give a mathematical formula. Why is
Amdahl’s law a concern when developing parallel applications?
Why in many cases is it not a show-stopper?
What is overhead? Give several examples of how a parallel
program may need to do more work or use more memory than a
sequential program.
Do programs running on a shared-memory computer have
communication overhead? Why or why not?
Do message passing program have synchronization overhead?
Why or why not?
Why might a parallel program have idle processes even when
there is work to be done?

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 40 / 41



Preview
September 19: Performance Measurement

Homework: Homework 2 goes out – parallel programming with Erlang
Reading: Lin & Snyder, chapter 3, pp. 68–77
Homework: September 23, Homework 1 deadline for early-bird bonus

September 24: Matrix Multiplication
Reading: Lin & Snyder, chapter 3, pp. 77–85
Homework: Homework 1 due

September 26: Superscalars and compilers
Reading: The MIPS R10000 Superscalar Microprocessor (Yeager)

October 1: Shared Memory Multiprocessors
Reading: Lin & Snyder, chapter 2, pp. 30–43.
Homework: Homework 3 goes out

October 3: Message Passing Multiprocessors

October 8: Models of Parallel Computation
Reading: Lin & Snyder, chapter 2, pp. 43–59.

October 10: Peril-L, Reduce, and Scan
Reading: Lin & Snyder, chapter 3, pp. 87–97.

Mark Greenstreet Performance Loss CpSc 418 – Sept. 17, 2013 41 / 41

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491460&tag=1

