
Parallel Erlang

Mark Greenstreet

CpSc 418 – Sept. 12, 2013

Outline:
Processes
Count 3s and other Trees
Parallel Programming Abstractions

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 1 / 18



Objectives

Introduce Erlang’s features for concurrency and parallelism
I Spawning processes.
I Sending and receiving messages.

Count 3s as a simple parallel program
I The parallel version
I Refining the parallel version
I Applying that structure to other problems

Parallel Programming Abstractions
I Reduce
I The workers and wtree modules

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 2 / 18



Processes – Overview

The built-in function spawn creates a new process.
Each process has a process-id, pid.

I The built-in function self() returns the pid of the calling process.
I spawn returns the pid of the process that it creates.
I The simplest form is spawn(Fun).

F A new process is created.
F The function Fun is invoked with no arguments in that process.

Sending a message.
I Pid ! Message

sends Message to the process with pid Pid.
I Message is any Erlang term (i.e. an arbitrary expression).

Receiving messages:
See next slide.

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 3 / 18

http://www.erlang.org/doc/man/erlang.html#spawn-1
http://www.erlang.org/doc/man/erlang.html#self-0


Receiving Messages (short version)

receive
Pattern1 -> Expr1;
Pattern2 -> Expr2;
...
PatternN -> ExprN

end

If there is a pending message for this process that matches one of
the patterns,

I The message is delivered, and the value of the receive
expression is the value of the corresponding Expr.

I Otherwise, the process blocks until such a message is received.

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 4 / 18



A simple example

1> MyPid = self().
<0.152.0>
2> spawn(fun() -> MyPid ! "hello world" end).
<0.164.0>
3> receive Msg1 -> Msg1 end.
"hello, world"

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 5 / 18



Count 3s with a Tree

report grand total (and time)

send total to parent

count 3s in the list

leaf leaf leaf leaf

mid mid

tallytally tallytally

root

receive tallys from childred
add and send total to parent

total total

recieve totals

create list of N/P elements

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 6 / 18



Let’s try it
This space left blank for your notes. I’ll show the erlang separately.

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 7 / 18



A better timing measurement

total

leaf leaf leaf

tallytally tallytally

root

mid mid

leaf:

create list of N/P elements
send ’ready’ to parent
wait for ’go’
count 3s in the list
send total to parent

mid:

wait for tallies

wait for readies:

wait for go:
send gos to children

send ready to parent

send total to parent

root:

send gos

wait for totals

wait for readies
start timer

compute grand total
end timer
report results

total

leaf

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 8 / 18



Let’s try it
This space left blank for your notes. I’ll show the erlang separately.

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 9 / 18



The reduce pattern

Counting 3s is fun, but it won’t pay the rent.
What if I wanted to know the sum of the elements in a big list,
distributed across a tree of processes?
What if I wanted to know the maximum of the elements in a big
list, distributed across a tree of processes?
What if I wanted to know the third largest of the elements in a big
list, distributed across a tree of processes?
What if I wanted to know the longest run of that atom a cow in a
big list distributed across a tree of processes?

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 10 / 18



What’s the pattern?
This space left blank for your notes. I’ll put something into the final
version of the slides.

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 11 / 18



What should a worker process look like?
This space left blank for your notes. I’ll put something into the final
version of the slides.

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 12 / 18



Keeping data between requests
This space left blank for your notes. I’ll put something into the final
version of the slides.

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 13 / 18



APIs

workers pools
http://www.ugrad.cs.ubc.ca/˜cs418/resources/erl/doc/workers.html

worker trees
http://www.ugrad.cs.ubc.ca/˜cs418/resources/erl/doc/workers.html

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 14 / 18

http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/workers.html


Count 3s using wtree

This space left blank for your notes. I’ll show the erlang separately.

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 15 / 18



Summary
To be added in the final version.

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 16 / 18



Preview
September 17: Performance Loss

Reading: Lin & Snyder, chapter 3, pp. 61–68

September 19: Performance Measurement
Homework: Homework 2 goes out – parallel programming with Erlang
Reading: Lin & Snyder, chapter 3, pp. 68–77
Homework: Homework 1 deadline for early-bird bonus

September 24: Matrix Multiplication
Reading: Lin & Snyder, chapter 3, pp. 77–85
Homework: Homework 1 due

September 26: Superscalars and compilers
Reading: The MIPS R10000 Superscalar Microprocessor (Yeager)

October 1: Shared Memory Multiprocessors
Reading: Lin & Snyder, chapter 2, pp. 30–43.
Homework: Homework 3 goes out

October 3: Message Passing Multiprocessors

October 8: Models of Parallel Computation
Reading: Lin & Snyder, chapter 3, pp. 43–59.

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 17 / 18

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491460&tag=1


Review Questions

To be added in the final version.

Mark Greenstreet Parallel Erlang CS 418 – Sept. 12, 2013 18 / 18


