
Sequential Erlang

Mark Greenstreet

CpSc 418 – Sept. 10, 2013

Outline:
Why functional programming?
Sequential Erlang
A bit of processes and communication

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 1 / 43

Objectives

Learn/review key concepts of functional programming:
I Referential transparency.
I Higher-order functions can encode common programming patterns.

Introduction to Erlang (mostly sequential)
I Program design by structural decomposition.
I Pattern matching: works naturally with structural decomposition.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 2 / 43

Why Parallel Programming is Hard

Programming is hard.
Parallel programming adds more complexity:

I Finding parallelism.
I Coordination: avoiding races and deadlocks.
I Keeping overhead under control.

We need to simplify something to make thinking room for
parallelism:

I Example: Google’s map-reduce paradigm.
Everything is divide-and-conquer (also Hadoop).

I Example: nVidia’s data parallelism – CUDA.
Everything is a big, homogeneous array.

I Example: Parallel functional programming: Erlang
Everything is side-effect free.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 3 / 43

How Erlang Helps
Erlang uses message passing

I Interactions between processes are under explicit control of the
programmer.

I Fewer races, synchronization errors, etc.
Erlang is functional

I Programming is declarative: it’s more like math
Imperative programs (e.g. Java, C, Python, etc.) are more like
recipes.

I A comment I’ve often heard from programmers in industry (Google,
Intel, Microsoft, Oracle, . . .): “With sequential programming,
assertional reasoning (invariants, pre- and post-conditions) are
optional for most code. With parallel code, you must think
assertionally.”

Erlang has simple mechanisms for process creation and
communication

I The structure of the program is not buried in a large number of calls
to a complicated API.

Big picture: Erlang makes the issues of parallelism in parallel
programs more apparent.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 4 / 43

Functional Programming and Erlang

Programming without state.
Referential transparency.
Life without loops.
Definitions vs. recipes.
Thanks: this section was adopted from slides that Kurt Eiselt
prepared for CPSC 312.

“A language that doesn’t affect the way you think about programming
is not worth knowing.” (Alan Perlis)

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 5 / 43

What is Functional Programming?
Imperative programming (C, Java, Python, . . .) is a programming
model that corresponds to the von Neumann computer:

I A program is a sequence of statements.
In other words, a program is a recipe that gives a step-by-step
description of what to do to produce the desired result.

I Typically, the operations of imperative languages correspond to
common machine instructions.

I Control-flow (if, for, while, function calls, etc.)
Each control-flow construct can be implemented using branch,
jump, and call instructions.

I This correspondence program operations and machine instructions
simplifies implementing a good compiler.

Functional programming (Erlang, lisp, scheme, Haskell, ML, . . .)
is a programming model that corresponds to mathematical
definitions.

I A program is a collection of definitions.
I These include definitions of expressions.
I Expressions can be evaluated to produce results.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 6 / 43

Programming and State

In an imperative program, statements modify the values of
variables. For example,

I x = y+3; sets the value of x to the sum of the value of y and 3.
I The old value of x is overwritten (i.e. destroyed).
I Note that this is what make debugging hard:

F You can see that your program computed an incorrect value or
reached a point in the control-flow where it shouldn’t be.

F BUT you can’t see how it got there, because intermediate results that
led to this point are now gone.

In a functional language, declarations associate values with
variables.

I A variable gets a value when it is declared.
I This value is never changed.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 7 / 43

Referential Transparency
In a functional program, every function call with the same
parameters returns the same result. Every time. This is a result of
a mathematical and functional programming principle called
referential transparency.
Thus, cos(π/4) =

√
2/2 every time you call cos. You don’t get

different values for the cosine of the same argument with different
calls.
Isn’t this obvious?

I Apparently not. In imperative languages (such as C or Java) a
function can have side effects; it can change the value of global
state:

int countCalls(args ...) {
static ncalls = 0;
return(++ncalls);

}
Successive calls to countCalls return different values.

I We rely on this: I/O functions, memory allocation, object
construction, and much, much more.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 8 / 43

Side Effects

As noted above, imperative languages rely on having functions with side
effects.
But, if a function (e.g. cos) has side-effects and returns different values
on different calls with the same argument, most of us will get confused.
How do we know when a function has side-effects?

I “It should be ‘obvious’ when you think about what the function
does.”

I BUT, if you think about the function differently than I do, and we are
working on the same project, life can get very confusing very
quickly.

I So, we need to document all of the side-effects, and pay attention
to the documentation. Of course, this doesn’t really happen in the
real world.

Side effects are even more insidious in parallel programs.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 9 / 43

Side Effects

As noted above, imperative languages rely on having functions with side
effects.
But, if a function (e.g. cos) has side-effects and returns different values
on different calls with the same argument, most of us will get confused.
How do we know when a function has side-effects?
Side effects are even more insidious in parallel programs.

I You can see that a process computed an incorrect value or reached
a point in the control-flow where it shouldn’t be,

I but you can’t see how it got there.
I Worse yet, you might have gotten there because of what some

other process did,
I And it might not happen the next 100 times you try because it

depends on timing details.
I Heisenbugs!!! /

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 9 / 43

Loops violate referential transparency

// vector dot-product
sum = 0.0;
for(i = 0; i < a.length; i++)

sum = a[i] * b[i];

// merge, as in merge-sort
while(a != null && b != null) {

if(a.key <= b.key) {
last->next = a;
last = a;
a = a->next;
last->next = null;

} else {
...

}
}

Loops rely on changing the values of variables.
Functional programs use recursion instead.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 10 / 43

Life without loops

dotProd([], []) -> 0;
dotProd([A | Atl], [B | Btl]) -> A*B + dotProd(Atl, Btl).

Functional programs use recursion instead of iteration:
dotProd([], []) -> 0;
dotProd([A | Atl], [B | Btl]) -> A*B + dotProd(Atl, Btl).

Common programming patterns are provided by higher-order
functions:

-import(lists, [map/2, sum/1, zip/2]).
dotProd(Atl, Btl) ->

sum(map(fun({X, Y}) -> X*Y end, zip(Atl, Btl))).

I {X, Y} is an Erlang tuple.
I More about tuples coming up on Slide 17.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 11 / 43

Definitions Instead of Recipes
Functional code tends to describe what the result is rather than
what the code does.
Example 1:

dotProd([], []) -> 0;
dotProd([A | Atl], [B | Btl]) -> A*B + dotProd(Atl, Btl).

I The first line says that the dot-product of two, zero-element vectors
is 0.

I The second line says that the dot-product of two, N-element vectors
is the product of the products of their first elements plus the dot
product of the (N − 1)-element vectors that correspond to the rest
of each argument.

Example 2: dotProd(A, B) ->
sum(map(fun({X, Y}) -> X*Y end, zip(A, B))).

The dot product of two vectors is the sum of the pairwise products
of their elements.
Source code at
http://www.ugrad.cs.ubc.ca/˜cs418/2013-1/lecture/09.10/ex.erl.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 12 / 43

http://www.ugrad.cs.ubc.ca/~cs418/2013-1/lecture/09.10/ex.erl

Example: Sorting a List

The simple cases:
I Sorting an empty list: sort([]) ->

I Sorting a singleton list: sort([A]) ->

How about a list with more than two elements?
I Merge sort?
I Quick sort?
I Bubble sort (NO WAY! Bubble sort is DISGUSTING!!!).

Let’s figure it out.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 13 / 43

Sorting: Erlang code
To be worked out in class.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 14 / 43

A bit more Erlang

The next few slides cover some frequently used Erlang features that
we haven’t covered yet:

atoms
tuples
pattern matching

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 15 / 43

Atoms

Erlang has a primitive type called an atom.
I An atom is any non-empty sequence of

F letters, a. . .z and A. . .Z,
F digits, 0. . .9, and
F underscores, ,
F where the first character is a lower-case letter, a. . .z.

I Or, any sequence of characters enclosed by single quotes, ’.
I Examples: atom, r2D2, ’3r14|\|6 r00lz’.

Each atom is distinct.
I Handy for “keys” for pattern matching and flags to functions.
I Erlang uses several standard atoms including: true, false, ok.
I Module and function names are atoms.

See also: patterns.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 16 / 43

Tuples
Tuples are the other main data-structure in Erlang.
Some simple examples:

1> T1 = {cat, dog, potoroo}.
{cat,dog,potoroo}
2> L6 = [{cat, 17}, {dog, 42}, {potoroo, 8}].
[{cat,17}, {dog,42}, {potoroo,8}]
3> element(2, T1).
dog
4> T2 = setelement(2, T1, banana).
{cat,banana,potoroo}
5> T1.
{cat,dog,potoroo}

On Slide 11 we used the function lists:zip(A, B).
This creates a list of two-element tuples from two lists of the same
length.

6> lists:zip([cat, dog, potoroo], [1, 2, 3]).
[{cat, 1}, {dog, 2}, {potoroo, 3}].

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 17 / 43

Lists vs. tuples

Tuples are typically used for a small number of values of
heterogeneous “types”. The position in the tuple is significant.
Lists are typically used for an arbitrary number of values of the
same “type”. The position in the list is usually not-so-important
(but we may have sorted lists, etc.).

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 18 / 43

Pattern Matching
Erlang makes extensive use of pattern matching.

I The examples on this slide are very simple because of the small
Erlang fragment that we have so far.

I More extensive examples will occur on subsequent slides.
Simple example:

7> [Head | Tail] = [1,5,34].
[1,5,34]
8> Head.
1
9> Tail.
[5,34]

I Head and Tail were unbound before executing command 7.
I The Erlang run-time finds if there is a way to choose values for
Head and Tail such that the left side of the = operator, [Head,
Tail], matches the right side, L1.

I The Erlang run-time finds such a choice of values and sets Head
and Tail accordingly.

I If there’s no way to make a match, then an error is reported.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 19 / 43

More Matching
The general form for matching is: LeftSide = RightSide.
LeftSide can be an expression of Erlang values and unbound
variables combined using lists and tuples.
RightSide can be an arbitrary expression.
Examples:
10> [1 | X1] = L1.
[1,5,34]
11> X1.
[5,34]
12> [A1, B1, 2*17] = L1. % The compiler replaces 17*2 with 34.
[1,5,34]
13> [1, 5, 2*C1] = L1.

* 1: illegal pattern % But it’s not a general equation solver!
14> [, B2,] = L1.
[1,5,34]
15> B2.
5

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 20 / 43

An example

Problem Statement: write a function balanced(L) that returns true
iff:

L is string consisting of parentheses ((and)), square brackets ([
and]), and whitespace.
Every (is paired with a subsequent).
Every [is paired with a subsequent].
Proper nesting.
Examples:

I balanced("([][()[]])") -> true.
I balanced(")(") -> false.
I balanced("([)]") -> false.
I balanced("()[]") -> true.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 21 / 43

balanced: Design

Consider: balanced(L)
What if L is a list?

I What if L is the empty list?
I What if L has the form [Hd | Tl]?

F What if Hd is $(or $]?
F What are Hd is a white space character?
F What are Hd is a white space character?

What if L is not a list?
Hint: it may be simpler to write a helper function that can return
values other than true and false, and then check the final
result.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 22 / 43

balanced: Erlang code
To be worked out in class (time permitting).

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 23 / 43

Processes – Overview

The built-in function spawn creates a new process.
Each process has a process-id, pid.

I The built-in function self() returns the pid of the calling process.
I spawn returns the pid of the process that it creates.
I The simplest form is spawn(Fun).

F A new process is created.
F The function Fun is invoked with no arguments in that process.

Sending a message.
I Pid ! Message

sends Message to the process with pid Pid.
I Message is any Erlang term (i.e. an arbitrary expression).

Receiving messages:
See next slide.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 24 / 43

http://www.erlang.org/doc/man/erlang.html#spawn-1
http://www.erlang.org/doc/man/erlang.html#self-0

Receiving Messages (short version)

receive
Pattern1 -> Expr1;
Pattern2 -> Expr2;
...
PatternN -> ExprN

end

If there is a pending message for this process that matches one of
the patterns,

I The message is delivered, and the value of the receive
expression is the value of the corresponding Expr.

I Otherwise, the process blocks until such a message is received.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 25 / 43

A simple example

16> MyPid = self().
<0.152.0>
17> spawn(fun() -> MyPid ! "hello world" end).
<0.164.0>
18> receive Msg1 -> Msg1 end.
"hello, world"

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 26 / 43

Balanced parenthesis, with processes

The plan:
I The main process will open a file and send one character at a time

to a child process.
I The child will check for the balanced-parenthesis condition for the

stream of characters that it receives.
I When the child receives an ¡tt¿eof¡/tt¿ it sends ¡tt¿true¡/tt¿ or

¡tt¿false¿ back to the main process.
Why?

I An example of using processes.
I This is “more efficient” that the first approach because we don’t

have to hold the entire string in memory. This could matter if we
had a really big input file.

I It leads to a cool problem for the Sept. 12 mini-assignment.

Source code at
http://www.ugrad.cs.ubc.ca/˜cs418/2013-1/lecture/09.10/ex.erl.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 27 / 43

http://www.ugrad.cs.ubc.ca/~cs418/2013-1/lecture/09.10/ex.erl

Balanced parenthesis: the main process

% bFile(FileName) -> boolean
% Raises an error if FileName cannot be opened for reading.
% Read the contents of FileName and return true if it’s a string
% with balanced and properly nested ()s and []s.
bFile(FileName) ->

File = case file:open(FileName, read) of % open the file
{ok, F} -> F;
{error, Reason} -> error(Reason)

end,
MyPid = self(), % heed Socrates
Child = spawn(fun() -> % create the child process

MyPid ! {balanced, FileName, (bproc() == true)} end),
bScan(File, Child), % read the file, send contents to Child.
Ans = receive % get the result from Child.

{balanced, FileName, IsBalanced} -> IsBalanced
after 5000 -> error("time out")

end,
file:close(File), % clean up
Ans. % return the result

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 28 / 43

Balanced parenthesis: reading the file

% bScan(File, Pid) -> ok
% Raises an error if read(File, 1) fails.
% Read characters from File one at a time and send them to Pid.
% On end-of-file, send the eof atom to Pid, and return.
bScan(File, Pid) ->

X = file:read(File, 1), % read a character
case X of % what did we get?

{ok, [Char]} -> % got a character
Pid ! Char, % send it to Pid
bScan(File, Pid); % continue

eof -> % end of file
Pid ! eof; % send it to Pid, and we’re done

{error, Reason} -> % the read failed
error(Reason) % raise an error

end,
ok.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 29 / 43

Balanced parenthesis: checking for balance
% proc() -> true | false | NextChar
% Receive input characters. If we reach the end-of-input and all ()s and []s are
% balanced, return true. If we reach something that doesn’t match, we return it as
% NextChar – it may be a right parenthesis or bracket for an enclosing expression.
bproc() ->

receive
$(-> bproc($));
$[-> bproc($]);
eof -> true;
X ->

IsSpace = is whitespace(X),
if IsSpace -> bproc(); % ignore whitespace and continue

true -> X
end

end.
% Look for a Right to match a left parenthesis or bracket.
bproc(Right) ->

case bproc() of % skip balanced substrings and get next character
Right -> bproc(); % It’s what we wanted. Check the remaining input.
Else -> false % mismatch – give up and return false.

end.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 30 / 43

Summary

Why Erlang?
I Functional – avoid complications of side-effects when dealing with

concurrency.
I But, we can’t use imperative control flow constructions (e.g. loops).

F Design by declaration: look at the structure of the data.
F Higher-order functions (e.g. map, and foldl) encode common

software patterns.

Sequential Erlang
I Lists, tuple, atoms
I Pattern matching
I Using structural design for sorting, balanced parentheses.

Quick intro to processes.
I More on Thursday (Sept. 12).

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 31 / 43

Preview
September 12: Parallel programming with Erlang

Mini-Assignment: Mini-Assignment due before class

September 17: Performance Loss
Reading: Lin & Snyder, chapter 3, pp. 61–68

September 17: Performance Measurement
Homework: Homework 2 goes out – parallel programming with Erlang
Reading: Lin & Snyder, chapter 3, pp. 68–77
Homework: Homework 1 deadline for early-bird bonus

September 24: Matrix Multiplication
Reading: Lin & Snyder, chapter 3, pp. 77–85
Homework: Homework 1 due

September 26: Superscalars and compilers
Reading: The MIPS R10000 Superscalar Microprocessor (Yeager)

October 1: Shared Memory Multiprocessors
Reading: Lin & Snyder, chapter 2, pp. 30–43.
Homework: Homework 3 goes out

October 3: Message Passing Multiprocessors

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 32 / 43

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491460&tag=1

Review Questions

What is referential transparency?
Why don’t functional languages have loops?
Describe the map function.
Describe the foldl function.
How would you write a pow(X, Y) so that

I If X and Y are both numbers (integers or floats), then pow(X, Y)
returns X raised to the Yth power.

I If X and Y are lists of the same length, then each element of X is
raised to the power given by the corresponding element of Y.

I If X is a list and Y is a number, each element of X is raised to the Yth

power.
I If X is a number and Y is a list, then the result is a list with X raised

to each power given by Y.

We’ll cover processes more on Thursday.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 33 / 43

Extra Material

The remaining slides are some handy material that we won’t cover in
lecture, but you can refer to if you find it helpful.

Message ordering in Erlang: what’s guaranteed and what’s not.
Message and pattern matching.
Using time-outs with messages.
Using time-outs for debugging: how to avoid hanging the Erlang
shell.
Erlang’s rules for punctuation: making sense of when to write
comma, semicolon, end, and period.
Suppressing verbose output when using the Erlang shell.
Forgetting variable bindings (only in the Erlang shell).

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 34 / 43

Message Ordering
Let Process1 and Process2 be two processes.
If Process1 sends messages Msg1 and Msg2 to Process2 in
that order,

I and Process2 executes a receive with a pattern that matches
both messages

I and no other pattern of the receive matches either message,
I then Msg1 will be delivered before Msg2.

No other ordering is guaranteed.
In particular, the triangle inequality is not guaranteed:

I Process1 can send Msg12 to Process2 and then send Msg13 to
Process3.

I Process3 can receive Msg13 from Process1 and then send
Msg32 to Process2.

I Process2 can receive message Msg32 before it receives
message Msg12.

Simple rule: messages can arrive in any order with the exception
that two messages from the same sender to the same receiver will
be delivered in order.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 35 / 43

Messages and Pattern Matching

Erlang makes extensive use of messages.
I So, it’s a good idea to use pattern matching to make sure that the

message that you receive is the one that you wanted.
I Example (based on the September 5 lecture (slide 23)):

count3s(L0, N0, NProcs, MyPid) -> % > 1 processor.
...
spawn(fun() ->

MyPid ! {count3s, count3s:count3s(L1)} end),
C2 = count3s(L2, N2, NProcs-1, MyPid),
receive {count3s, C1} -> C1 + C2 end.

F The message of the child gets delivered to us because it is sent to
MyPid.

F The receive gets a message that is the number of 3’s in a sublist
because it is tagged with count3s.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 36 / 43

http://www.ugrad.cs.ubc.ca/~cs418/2013-1/lecture/09-05.pdf

Receive and Time Outs
The final alternative of a receive can be a time-out (in
milliseconds):

receive
Pattern2 -> Expr2;
...
PatternN -> ExprN
after TimeOut -> ExprTimeOut

end

There are two special values for TimeOut:
I 0 – the time-out is taken immediately if there are no pending

messages that match one of the patterns.
I infinity – the time-out is never taken.

Time-outs should be used carefully:
I They don’t work well with changes in processor or network

technology.

Time-outs are handy for debugging (see next slide).

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 37 / 43

Debugging with Time-Outs (part 1)
Consider:
count3s(L0, N0, NProcs, MyPid) -> % > 1 processor.

...
spawn(fun() -> MyPid !
{cuont3s, count3s:count3s(L1)} end),

C2 = count3s(L2, N2, NProcs-1, MyPid),
receive {count3s, C1} -> C1 + C2 end.

Now, try running it:
19> count3s p1:time it(1000).
% hangs “forever”
∧G
User switch command
--> i
--> c

20>

What went wrong?
I If we do some debugging, we’ll find that the receive statement is

hanging.

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 38 / 43

Debugging with Time-Outs (part2)

Add a time-out

count3s(L0, N0, NProcs, MyPid) -> % > 1 processor.
...
spawn(fun() -> MyPid !
{cuont3s, count3s:count3s(L1)} end),

C2 = count3s(L2, N2, NProcs-1, MyPid),
receive
{count3s, C1} -> C1 + C2
after 500 -> msg dump()

end.

msg dump() ->
io:format("time-out on receive∼n"),
msg dump2().

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 39 / 43

Debugging with Time-Outs (part3)

The rest of the code

msg dump2() ->
receive

X -> io:format("∼w∼n", [X]),
msg dump2()

after 0 -> ’time out for receive’
end.

Now, try running it:
20> count3s p1:time it(1000).
time out for receive
cuont3s, 14 % bug found!
cuont3s, 14 % ’cuont3s’ is misspelled
...
{’time out for receive’,3.5063929999999996}
21>

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 40 / 43

Punctuation
Erlang has lots of punctuation: commas, semicolons, periods, and
end.
It’s easy to get syntax errors or non-working code by using the
wrong punctuation somewhere.
Rules of Erlang punctuation:

I Erlang declarations end with a period: .
I A declaration can consist of several alternatives.

F Alternatives are separated by a semicolon: ;
F Note that many Erlang constructions such as case, fun, if, and

receive can have multiple alternatives as well.
I A declaration or alternative can be a block expression

F Expressions in a block are separated by a comma: ,
F The value of a block expression is the last expression of the block.

I Expressions that begin with a keyword end with end
F case Alternatives end
F fun Alternatives end
F if Alternatives end
F receive Alternatives end

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 41 / 43

Avoiding Verbose Output

Sometimes, when using Erlang interactively, we want to declare a
variable where Erlang would spew enormous amounts of
“uninteresting” output were it to print the variable’s value.

I We can use a comma (i.e. a block expression) to suppress such
verbose output.

I Example
21> L1 to 5 = lists:seq(1, 5).
[1, 2, 3, 4, 5].
22> L1 to 5M = lists:seq(1, 5000000), ok.
ok
23> length(L1 to 5M).
5000000
24>

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 42 / 43

Forgetting Bindings

Referential transparency means that bindings are forever.
I This can be nuisance when using the Erlang shell.
I Sometimes we assign a value to a variable for debugging purposes.
I We’d like to overwrite that value later so we don’t have to keep

coming up with more name.s
In the Erlang shell, f(Variable). makes the shell “forget” the
binding for the variable.

24> X = 2+3. 5.
25> X = 2*3.

** exception error: no match of right hand side value 6.
26> f(X).
ok
27> X = 2*3.
6
28>

Mark Greenstreet Sequential Erlang CS 418 – Sept. 10, 2013 43 / 43

