
Parallel Computation

Mark Greenstreet

CpSc 418 – Sept. 5, 2013

Outline:
Why Does Parallel Computation Matter?
Course Overview
Our First Parallel Program
The next few weeks

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 1 / 32

Clock Frequency and Power

1990 2000 2010

100MHz

 1GHz

 10GHz

year

c
lo

c
k
 f

re
q

u
e

n
c
y

single core
double core
triple core
quad core
hex core

3.3GHz

2
0

0
3

51% annual clock freq. growth

 25W

 50W

 75W

100W

125W

150W

p
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

w
a

tt
s
)

Clock Speed and Power of Intel Processors vs. Year
Released[Wikipedia CPU-Power, 2011]

Designs have been power-limitted since about 2003.
Otherwise, you would be able to buy a 240GHz processor today!

Once power was taken into account, lower power processors have
been produced.
Multi-core now is the dominant CPU paradigm.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 2 / 32

More Problems

The memory bottleneck.
Limited instruction-level-parallelism.
Design complexity.
Reliability.
See [Asanovic et al., 2006].

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 3 / 32

Processor Design Trade-Offs

0 2 4 6 8 100

2

4

6

8

10
design for max single thread performance

de
sig

n
fo

r m
in

 e
ne

rg
y

opportunity for parallel computing

Time/Operation

En
er

gy
/O

pe
ra

tio
n

Energy vs. Time Trade-Offs (idealized).

If single-thread performance is the primary concern,
then CPU designers push against the power-limit for cooling the
chip.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 4 / 32

Processor Design Trade-Offs

0 2 4 6 8 100

2

4

6

8

10
design for max single thread performance

de
sig

n
fo

r m
in

 e
ne

rg
y

opportunity for parallel computing

Time/Operation

En
er

gy
/O

pe
ra

tio
n

Energy vs. Time Trade-Offs (idealized).

If minimizing energy consumption (e.g. maximizing battery life) is
the primary concern,
then CPU designers aim for the minimum performance that
completes the required computation in time.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 4 / 32

Processor Design Trade-Offs

0 2 4 6 8 100

2

4

6

8

10
design for max single thread performance

de
sig

n
fo

r m
in

 e
ne

rg
y

opportunity for parallel computing

Time/Operation

En
er

gy
/O

pe
ra

tio
n

Energy vs. Time Trade-Offs (idealized).

Parallel computing allows us to use more, slow processors to get
the same task done using less time and less energy than a
sequential version.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 4 / 32

Trading Energy and Time

Computations take less energy when they are done slower.
Simple model: Energy · Time = Constant
Consider a task that requires energy E and time T .
I If we can break the task into two equal pieces, each requiring

energy E/2 and time T/2,
I Then, we could do the problem in parallel using total energy

E and time T/2.
I Or, we could do each of the smaller tasks on a processor

running at half the speed as the original.
2 Now, the energy for each task is E/4.
2 The total energy is E/2.
2 And the time is T .

We can save time and/or energy by using parallel computation.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 5 / 32

Parallel Computing Solves Other Problems Too!
The memory bottleneck
I It is much easier to increase memory bandwidth than it is to

decrease memory latency.
I Many slow CPUs can have references in progress at the

same time to high-latency, high-bandwidth memory. A single
CPU would stall.

Limited instruction-level-parallelism.
I Exploit explicit parallelism instead.
I BUT, the programmer has to write parallel code.

Design complexity.
I It’s much easier to design a CPU chip with many copies of the

same, simple CPU than with one big, complicated CPU.
Reliability.
I Many core designs have built-in redundancy.
I E.g., nVidia Fermi GPUs have 512 shaders, but only expose

448 or 480 to the programmer.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 6 / 32

Parallel Computing is Everywhere

Multicore desktops and laptops machines
Samsung Galaxy S4: Quad-core ARM processor+ GPU +
dedicated processors for modems, codecs, etc.
GPU: hundreds to thousands of programmable shaders.
Clouds
Supercomputers
Embedded computing: automotive, medical, appliances, all kinds
of other gadgets.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 7 / 32

Outline

Why Does Parallel Computation Matter?
Course Overview
I Syllabus
I The instructor, TA, text, . . .
I Plagiarism
I Bug bounties

Our First Parallel Program

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 8 / 32

Syllabus
September
I Parallel Programming in Erlang
I Basic algorithms and parallel programming techniques

October
I Architectures for Parallel Computers
I Performance Analysis: principles, models, and

measurements
I Midterm: October 22, 2013 – in class

November
I Parallel Programming Paradigms:

2 message passing: MPI
2 threads: pthreads and/or Java threads

I More parallel algorithms
2 mutual exclusion and other synchronization mechanisms
2 sorting, dynamic programming, . . .

The more detailed syllabus (but subject to revision):
http://www.ugrad.cs.ubc.ca/˜cs418/2013-1/syllabus.html

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 9 / 32

http://www.ugrad.cs.ubc.ca/~cs418/2013-1/syllabus.html

Administrative Stuff – Who

The instructor
I Mark Greenstreet, mrg@cs.ubc.ca
I ICICS/CS 323, (604) 822-3065
I Office hours: Mondays, 12noon – 1pm, ICICS/CS 323

2 Office hours will change if the proposed time doesn’t
work for many students in the class,

2 or if I end up with another meeting scheduled at that time.
2 You can always send me e-mail to make an appointment.

The TAs
RJ Sumi, rjsumi@cs.ubc.ca
Jake Lever, jake.lever@alumni.ubc.ca
Office Hours: Thursdays, 10am – 11am, Demco 150

Course webpage: http://www.ugrad.cs.ubc.ca/˜cs418.
Online discussion group: on piazza (how do I give that a url?)

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 10 / 32

mailto:mrg@cs.ubc.ca
mailto:rjsumi@cs.ubc.ca
mailto:jake.lever@alumni.ubc.ca
http://www.ugrad.cs.ubc.ca/~cs418

Administrative Stuff – What

The book: “Principles of Parallel Programming”
Calvin Lin and Lawrence Snyder

web: http://www.ugrad.cs.ubc.ca/˜cs418

Grades:
Homework: 35% roughly one assignment every two weeks
Midterm: 25% October 22, in class
Final: 40%

Quizzes and Pre-lecture mini-assignments

I Worth 20% of point missed from HW and exams.
I There will be 5-10 such mini-assignments.
I The first one is for Sept. 10. See

http://www.ugrad.cs.ubc.ca/˜cs418/2013-1/mini/sept10/q.pdf

Homework late policy:

I Homework N due one week after homework N + 1 assigned.
I No late homework accepted.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 11 / 32

http://www.ugrad.cs.ubc.ca/~cs418
http://www.ugrad.cs.ubc.ca/~cs418/2013-1/mini/sept10/q.pdf

Bug Bounties

If I make a mistake when stating a homework problem, then the
first person to report the error gets extra credit.
I If the error would have prevented solving the problem, then

the extra credit is the same as the value of the problem.
I Smaller errors get extra credit in proportion to their severity.

Likewise, bug bounties are awarded (as homework extra credit) for
finding errors in mini-assignments, lecture slides, the course
web-pages, code I provide, etc.
The midterm and final have bug bounties awarded in midterm and
final exam points respectively.
If you find an error, report it.
I Suspected errors in homework, lecture notes, and other

course materials should be posted to piazza.
I The first person to post a bug gets the bounty.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 12 / 32

Grades: the big picture

RawGrade = 0.35 ∗ HW + 0.25 ∗MidTerm + 0.40 ∗ Final

MiniBonus = 0.20 ∗ (1−min(RawGrade,1)) ∗MiniAssignments

BB = 0.35 ∗ BBHW + 0.25 ∗ BBMT + 0.40 ∗ BBFX

CourseGrade = min(RawGrade + MiniBonus + BB,1)

Mini-assignments:
If your raw grade is 90%, you can get at most 2% from the
mini-assignments.
You can afford to skip them if you’re doing well and want to spend your
on other courses.
If your raw grade is 70%, you can get at most 6% from the
mini-assignments.
This can move your letter grade up a notch (e.g. C+ to B−).
If your raw grade is 45%, you can get up to 11% from the
mini-assignments. Do the mini-assignments – I hate turning in failing
grades.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 13 / 32

Grades: the big picture

RawGrade = 0.35 ∗ HW + 0.25 ∗MidTerm + 0.40 ∗ Final

MiniBonus = 0.20 ∗ (1−min(RawGrade,1)) ∗MiniAssignments

BB = 0.35 ∗ BBHW + 0.25 ∗ BBMT + 0.40 ∗ BBFX

CourseGrade = min(RawGrade + MiniBonus + BB,1)

I’ll probably toss in some extra credit marks into the regular HW –
these tend to be “unreasonable” problems. They are intended to
be fun challenges for those who are otherwise blowing the course
away and would enjoy learning more.
Bug-bounties are for everyone. The reward you for looking at the
HW when it first comes out, and not waiting until the day before it
is due. ,

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 13 / 32

Plagiarism

I have a very simple criterion for plagiarism:
Submitting the work of another person, whether that be another student,
something from a book, or something off the web and representing it as your
own is plagiarism and constitutes academic misconduct.

If the source is clearly cited, then it is not academic misconduct.
If you tell me “This is copied word for word from Jane Foo’s solution” that is not
academic misconduct. It will be graded as one solution for two people and each
will get half credit. I guess that you could try telling me how much credit each of
you should get, but I’ve never had anyone try this before.

I encourage you to discuss the homework problems with each other.
If you’re brainstorming with some friends and the key idea for a solution comes
up, that’s OK. In this case, add a note to your solution that lists who you
collaborated with.

More details at:
I http://www.ugrad.cs.ubc.ca/˜cs418/plagiarism.html
I http://learningcommons.ubc.ca/guide-to-academic-integrity/

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 14 / 32

http://www.ugrad.cs.ubc.ca/~cs418/plagiarism.html
http://learningcommons.ubc.ca/guide-to-academic-integrity/

Lecture Outline

Why Does Parallel Computation Matter?
Course Overview
Our First Parallel Program
I Erlang quick start
I Count 3’s
I Sequential Erlang version
I First parallel version
I Second parallel version

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 15 / 32

Erlang Intro – very abbreviated!

Erlang is a functional language:
I Variables are given values when declared, and the value

never changes.
I The main data structures are lists, [Head | Tail], and

tuples (covered later).
I Extensive use of pattern matching.

The source code for the examples in this lecture is available at:
http://www.ugrad.cs.ubc.ca/˜cs418/2013-1/lecture/09.05/code.html

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 16 / 32

http://www.ugrad.cs.ubc.ca/~cs418/2013-1/lecture/09.05/code.html

Simple Example: factorial

In Java:

int fac(int n) {
int p = 1;
while(n > 0) {

p = p*n;
n = n-1;

}
return(p);

}
But, this isn’t functional: the values of n and p change with each
iteration of the while loop.
How can we get iteration without modifying the values of
variables?

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 17 / 32

Simple Example: factorial

Old New)

int fac(int n) {
int p = 1;
while(n > 0) {

p = p*n;
n = n-1;

}
return(p);

}

int fac(int n) {
if(n == 0) return(1);
else return(n*fac(n-1));

}

How can we get iteration without modifying the values of
variables?
Replace iteration with recursion.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 17 / 32

Simple Example: factorial
Old (Java) New (Erlang)
int fac(int n) {

if(n == 0) return(1);
else return(n*fac(n-1));

}

fac(N) ->
if N == 0 -> 1;

N > 0 -> N*fac(N-1)
end.

Erlang function definitions have the form:

functionName(ParameterList) -> expression .

Erlang variable names start with upper-case letters.
An if-expressions has form:

if cond1 -> expr1;
cond2 -> expr2;
...
condn -> exprn

end

I The value of the if-expression is the value of the first
expression whose corresponding condiion is true.

I If no condition is satisfied, then an exception is thrown.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 17 / 32

Simple Example: factorial

Old New)

fac(N) ->
if N == 0 -> 1;

N > 0 -> N*fac(N-1)
end.

fac(0) -> 1;
fac(N) -> N*fac(N-1).

A function definition can consist of multiple “patterns”.
The first pattern that can be matched to the actual arguments is
the one that gets used.
We’ll cover more with patterns next week.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 17 / 32

Lists

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] is a list of 10
elements.
If L1 is a list, then [0 | L1] is the list obtained by prepending
the element 0 to the list L1. In more detail:

1> L1 = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100].
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
2> L2 = [0 | L1].
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
3> L3 = [0 , L1].
[0, [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]]

Of course, we traverse a list by using recursive functions:

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 18 / 32

Lists traversal example: sum

sum(List) ->
if (length(List) == 0) -> 0;

(length(List) > 0) -> hd(List) + sum(tl(List))
end.

length(L) returns the number of elements in list L.
hd(L) returns the first element of list L (the head), and throws an
exception if L is the empty list.
hd([1, 2, 3]) = 1. hd([1]) = 1 as well.
tl(L) returns the list of all elements after the first (the tail).
tl([1, 2, 3]) = [2, 3]. tl([1]) = [].

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 19 / 32

Lists traversal example: sum

sum([]) -> 0;
sum([Head | Tail]) -> Head + sum(Tail).

sum([Head | Tail]) matches any non-empty list with Head
being bound to the value of the first element of the list, and Tail
begin bound to the list of all the other elements.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 19 / 32

Count 3’s: a simple parallel programming example

Given an array (or list) with N items, return the number of those
elements that have the value 3.

Java:

int count3s(int[] data) {
int count = 0;
for(int i = 0; i < data.hi; i++)

if(data[i] == 3)
count++;

return(count);
}

Erlang:

count3s([]) -> 0;
count3s([3 | Tail]) -> 1 + count3s(Tail);
count3s([Other | Tail]) -> count3s(Tail).

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 20 / 32

Let’s try it!

-module count3s.
-export [count3s/1, rlist/1, rlist/2].

% count3s: return the number of 3’s in a list.
count3s([]) -> 0;
count3s([3 | Tail]) -> 1 + count3s(Tail);
count3s([Other | Tail]) -> count3s(Tail).

% rlist: return a list of N random digits, each selected from 1..M
rlist(0, M) -> [];
rlist(N,M) -> [random:uniform(M) | rlist(N-1,M)].

% list of N random digits selected from 1..10
rlist(N) -> rlist(N, 10).

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 21 / 32

Running Erlang

bash-3.2$ erl Erlang R14B03 (erts-5.8.4) [source]
[smp:8:8] [rq:8] [async-threads:0] [hipe]
[kernel-poll:false]

Eshell V5.8.4 (abort with ∧G)
1> c(count3s).
{ok,count3s}
2> L20 = count3s:rlist(20,5).
[1,3,4,5,3,2,3,5,4,3,3,1,2,4,1,3,2,3,3,1]
3> count3s:count3s(L20).
8
4> count3s:count3s(count3s:rlist(1000000,10))).
99961
5> q().
ok
7> bash-3.2$

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 22 / 32

First Parallel Version

-module count3s p1.
-export [count3s/1, count3s/2, childProc/2].

% count3s: return the number of 3’s in a list.
count3s(L0, N0, 1, MyPid) -> % 1 processor

count3s:count3s(L0); % just do it.
count3s(L0, N0, NProcs, MyPid) -> % > 1 processor.

% spawn a process to handle the first N/NProcs elements of L.
% make a recursive call with NProcs-1 to handle the rest.
N1 = N0 div NProcs,
N2 = N0 - N1,
{L1, L2} = lists:split(N1, L0),
spawn(count3s p1, childProc, [L1, MyPid]),
C2 = count3s(L2, N2, NProcs-1, MyPid),
receive % get a value from a child process, and add it to C2.
{count3s, C1} -> C1 + C2

end.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 23 / 32

First Parallel Version (cont.)

% versions of count3s that fill in default arguments.
count3s(L, NProcs) ->

count3s(L, length(L), NProcs, self()).
count3s(L) ->

count3s(L, erlang:system info(schedulers)).

childProc(L, ParentPid) ->
ParentPid ! {count3s, count3s:count3s(L)}.

Time to run sequential version on list with 1,000,000 elements:
13.8ms.

Time to run parallel version on list with 1,000,000 elements:
51.3ms.

Parallel programming achieves a 71% slow down!
I Why?

Because Erlang copies the arguments for child processes.

/
Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 24 / 32

Second Parallel Version

[1] Create NProcs worker processes.
[2] Each worker process generates Nelements/Nprocs random values.
[3] The root process asks each worker to send back the

number of 3’s in it’s portion of the values.
[4] The root process computes the sum of these values.

I measured the time to count the 3’s as the time for steps [3] and
[4] above.
Time to run the second parallel version on a list with 1,000,000
elements:

2.5ms.
Parallel programming achieves a 5.5x speed up.
I Pretty good for a quad-core machine!
I > 4x speed-up do to multi-threading.
I To get the code, go to

http://www.ugrad.cs.ubc.ca/˜cs418/2013-1/lecture/09.05/code.html

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 25 / 32

http://www.ugrad.cs.ubc.ca/~cs418/2013-1/lecture/09.05/code.html

Erlang Resources

Erlang Examples:
http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/lecture/09-08.pdf

My lecture notes that walk through the main features of Erlang
with examples for each. Try it with an Erlang interpretter running in
another window so you can try the examples and make up your
own as you go. This will cover everything you’ll need to make it
through all (or most) of what we’ll do in class, but it doesn’t explain
how to think in Erlang as well as “Learn You Some Erlang” or the
Erlang book (below).
Learn You Some Erlang
http://learnyousomeerlang.com

An on-line book that gives a very good introduction to Erlang. It
has great answers to the “Why is Erlang this way?” kinds of
questions, and it gives realistic assessments of both the strengths
and limitations of Erlang.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 26 / 32

http://www.ugrad.cs.ubc.ca/~cs418/2012-1/lecture/09-08.pdf
http://learnyousomeerlang.com

More Erlang Resources
The erlang.org tutorial
http://www.erlang.org/doc/getting_started/users_guide.html

Somewhere between my “Erlang Examples” and “Learn You
Some Erlang.”
Erlang Language Manual
http://www.erlang.org/doc/reference_manual/users_guide.html

My go-to place when looking up details of Erlang operators, etc.
Erlang Library Documentation
http://www.erlang.org/doc/man_index.html

Describes lists, io, math, and so much more.
The book: Programming Erlang: Software for a Concurrent World,
Joe Armstrong, 2007,
http://pragprog.com/book/jaerlang/programming-erlang

Very well written, with lots of great examples. More than you’ll
need for this class, but great if you find yourself using Erlang for a
big project.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 27 / 32

http://www.erlang.org/doc/getting_started/users_guide.html
http://www.erlang.org/doc/reference_manual/users_guide.html
http://www.erlang.org/doc/man_index.html
http://pragprog.com/book/jaerlang/programming-erlang

Getting Erlang

You can run Erlang by giving the command erl on any
departmental machine. For example:
I Linux: bowen, lin01, . . . , lin25, . . . ,
I Solaris: galiano, gambier

all machines above are .ugrad.cs.ubc.ca, e.g.
bowen.ugrad.cs.ubc.ca, etc.
Or, download it for your own computer.
See http://www.erlang.org/download.html

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 28 / 32

http://www.erlang.org/download.html

Starting Erlang

Start the Erlang interpretter.
gambier % erl
Erlang R14B (erts-5.8.1) [source]
[smp:64:64][rq:64][async-threads:0]
[kernel-poll:false]

Eshell V5.8.1 (abort with ∧G)
4> 2+3.
5
5>

The Erlang interpreter evaluates expressions that you type.
Expressions end with a “.” (period).

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 29 / 32

Preview of the next few weeks
September 10: Sequential programming with Erlang

Homework: Homework 1 goes out
Mini-Assignment: Mini-Assignment due before class
Reading: Lin & Snyder, chapter 1

September 12: Parallel programming with Erlang
Mini-Assignment: Mini-Assignment due before class

September 17: Quantifying Performance
Reading: Lin & Snyder, chapter 3, pp. 61–68

September 19: Matrix multiplication – algorithms
Homework: Homework 2 goes out – parallel programming with Erlang
Reading: Lin & Snyder, chapter 3, pp. 68–77
Homework: Homework 1 deadline for early-bird bonus

September 24: Matrix Multiplication – performance
Reading: Lin & Snyder, chapter 3, pp. 77–85
Homework: Homework 1 due

September 26: Superscalars and compilers
Reading: The MIPS R10000 Superscalar Microprocessor (Yeager)

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 30 / 32

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491460&tag=1

Review Questions

Name one, or a few, key reasons that parallel programming is
moving into mainstream applications.
How does the impact of your mini assignment total on your final
grade depend on how you did on the other parts of the class?
What are bug-bounties?
Why don’t functional languages have while or for loops?
What do they use instead?
What is the count 3’s problem?
Why was the first parallel version slower than the sequential
version?
Why was the speed-up factor for the second parallel version larger
than the number of processor cores used?

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 31 / 32

Bibliography
Krste Asanovic, Ras Bodik, et al.
The landscape of parallel computing research: A view from Berkeley.
Technical Report UCB/EECS-2006-183, Electrical Engineering and
Computer Science Department, University of California, Berkeley,
December 2006.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.pdf.

Microprocessor quick reference guide.
http://www.intel.com/pressroom/kits/quickrefyr.htm,
June 2013.
accessed 29 August 2013.

List of CPU power dissipation.
http:
//en.wikipedia.org/wiki/List_of_CPU_power_dissipation,
April 2011.
accessed 26 July 2011.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 5, 2013 32 / 32

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.intel.com/pressroom/kits/quickrefyr.htm
http://en.wikipedia.org/wiki/List_of_CPU_power_dissipation
http://en.wikipedia.org/wiki/List_of_CPU_power_dissipation

