
CpSc 418 Homework 4 Due: Nov. 29, 2012, 11:59pm

5% extra credit if solution submitted by 11:59pm on Nov. 25.

Please submit your solution using the handin program as:
cs418 hw4

1. Scan (20 points)
Consider the decaying average operation:

yi =

i∑
j=1

αi−jxj

In Erlang:

average d(List, Alpha) -> average help(List, Alpha, 0).
average help([], , ) -> [];
average help([X | Tl], Alpha, V) ->

V2 = Alpha*V + X,
[V2 | average help(Tl, Alpha, V2)].

(a) (5 points) Let x = [0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610]. Draw a picture
showing how decaying average can be computed using scan with four processors and α = 0.1.

See figure 1. I put in more detail than required for full credit. In particular, I sketched out what
the Leaf1 and Leaf2 functions do. Just drawing the edges for the two trees and labeling them
with the values that are sent along them is sufficient. Also, I divided the list into unequal size
pieces. This let me show how different values for αlength(List) can be handled. My guess is that
most solutions will divide the list into four segments of length four. That will get full credit as
well.

(b) (15 points) Write a parallel version using the wtree:scan function.

See hw4.erl.

2. 0-1 Principle – extended (20 points)
By showing that other operations commute with compare-and-swap, we can extend the 0-1 principle wider
classes of networks:

(a) (5 points) Let

swap(A, B) -> {B, A}

For any monotonic function, F, show that F commutes with swap.

F(swap(A,B)) = F({B,A}) definition of swap
= {F(B), F(A)} extension of F to tuples
= swap(F(B), F(A)) definition of swap

Thus, F commutes with swap.

(b) (15 points) For sorted lists, A and B, let

my merge(A, B) -> lists:split(length(A), lists:merge(A, B)).

For any monotonic function (i.e. non-decreasing), F, show that F commutes with my merge.

1

http://www.ugrad.cs.ubc.ca/~cs418/2013-1/hw/4/soln/hw4.erl


P
ro

c
e
ss

o
r 

3

L
e
a
f1

(S
) 

−
>

 {
6
5
0
.0

3
, 
0
.0

0
1
}

L
e
a
f2

(S
, 
{1

5
3
.4

8
6
2
3
8
5
3
2
1
1
, 
1
.0

e
−

1
3
})

 −
>

p
u
t(

S
, 
D

s
tK

e
y
, 
[2

4
8
.3

4
8
6
2
3
8
5
3
2
1
1
,

4
0
1
.8

3
4
8
6
2
3
8
5
3
2
1
1
,

6
5
0
.1

8
3
4
8
6
2
3
8
5
3
2
1
1
])

L
e
a
f1

(S
) 

−
>

 {
3
6
.2

3
8
, 
1
.0

e
−

4
}

[8
,1

3
,2

1
,3

4
]

L
e
a
f2

(S
, 
{5

.3
2
1
1
, 
1
.0

e
−

6
})

 −
>

1
3
.8

5
3
2
1
1
, 
2
2
.3

8
5
3
2
1
1
,

p
u
t(

S
, 
D

s
tK

e
y
, 
[8

.5
3
2
1
1
,

3
6
.2

3
8
5
3
2
1
1
])

L
e
a
f1

(S
) 

−
>

 5
.3

2
1
1
, 
1
.0

e
−

6
}

[0
,1

,1
,2

,3
,5

]

p
u
t(

S
, 
D

s
tK

e
y
, 
[0

, 
1
, 
1
.1

,
2
.1

1
, 
3
.2

1
1
, 
5
.3

2
1
1
])

L
e
a
f2

(S
, 
{0

, 
1
})

 −
>

[5
5
,8

9
,1

4
4
]

L
e
a
f1

(S
) 

−
>

 {
1
5
3
.4

5
, 
1
.0

e
−

3
}

9
4
.8

6
2
3
8
5
3
2
1
1
,

p
u
t(

S
, 
D

s
tK

e
y
, 
[5

8
.6

2
3
8
5
3
2
1
1
,

1
5
3
.4

8
6
2
3
8
5
3
2
1
1
])

L
e
a
f2

(S
, 
{3

6
.2

3
8
5
3
2
1
1
, 
1
.0

e
−

1
0
) 

−
>

{1
5
3
.4

5
, 
1
.0

e
−

3
}

{6
5
0
.0

3
, 
1
.0

e
−

3
}

{5
.3

2
1
1
, 
1
.0

e
−

6
}

{3
6
.2

3
8
, 
1
.0

e
−

4
}

{5
.3

2
1
1
, 
1
.0

e
−

6
}

C
o
m

b
in

e

C
o
m

b
in

e

A
c
c
In

 =
 {

0
, 
1
}

{6
5
0
.1

8
3
4
8
6
2
3
8
5
3
2
1
1
, 
1
.0

e
−

1
6
} 

(d
is

c
a
rd

e
d
)

{3
6
.2

3
8
5
3
2
1
1
, 
1
.0

e
−

1
0
}

{3
6
.2

3
8
5
3
2
1
1
, 
1
.0

e
−

1
0
}

{1
5
3
.4

8
6
2
3
8
5
3
2
1
1
, 
1
.0

e
−

1
3
}

{6
5
0
.1

8
3
4
5
, 
1
.0

e
−

6
}

P
ro

c
e
ss

o
r 

0
P

ro
c
e
ss

o
r 

1
P

ro
c
e
ss

o
r 

2

[2
3
3
,3

7
7
,6

1
0
]

Fi
gu

re
1:

T
he

sc
an

co
m

pu
ta

tio
n

fo
rd

ec
ay

in
g

av
er

ag
e

2



If L is a list, I’ll write F(L) as a shorthand for map(F, L). A simple, and full-credit solution
is to observe that merge(A,B) produces a list whose elements are the elements of A and the
elements of B in ascending order. Because F is monotonic, the elements of F(merge(A,B))
are in ascending order, and they are the elements of F(A) combined with F(B). Therefore,
Because F is monotonic, the elements of

F(merge(A,B)) = merge(F(A), F(B))

Thus, for any 0 ≤ N ≤ length(A) + length(B), The first N elements of F(merge(A, B))
are the same as the first N elements of merge(F(A), F(B)), and likewise for the last N
element. In particular, this applies for N = length(A). Therefore,

F(my merge(A,B)) = my merge(F(A), F(B))

as required.
A more formal proof could be written by defining merge and writing a proof by induction on the
length of lists A and B, but that level of formality is not required in this class.

3. Parallel sorting (40 points)
In this problem, you will show that the array Z is sorted into lexicographical order.

(a) (10 points) Show that at the end of phase 1, each block Bk has at most one dirty row.

At the end of phase 1, Bk is sorted into ascending or descending lexicographical order. I’ll
describe the ascending case. The argument for the descending case is equivalent. Let N0(Ak)
denote the number of 0s in Ak. Because Bk is in lexicographical order:

Bk(i, j) = 0 , if i < (N0(Ak) div
√
N) or (i = (N0(Ak) div

√
N)) ∧ (j = (N0(Ak) mod

√
N))

Bk(i, j) = 1 , otherwise

Thus, the only dirty row of Bk is the one with i = (N0(Ak) div
√
N), and even that row is clean

in the case that j = (N0(Ak) mod
√
N). Thus Bk has at most one dirty row.

(b) (10 points) Show that at the end of phase 3, all dirty rows of D are contained in a band of height at most
P/2.

After each processors sorts its columns, all of the columns are sorted. Consider pairs ofB blocks
of the form B2k, B2k+1. There are P/2 such pairs of blocks. Because block B2k was sorted by
an even indexed processor, it was sorted int ascending order. Therefore, its dirty row (if any) has
its zeros on the left and its ones on the right. Likewise, the dirty row of block B2k+1 has ones on
the left an zeros on the right. When the columns for these two blocks are sorted, there is at most
one dirty row remaining (as with Shear sort). There are P/2 such pairs of blocks. Thus, there
are at most P/2 dirty rows at the end of the column sort. Furthermore, all clean rows of zeros
have been moved to the rows with small indices and all clear rows of ones have been moved to
the rows with large indices. Therefore, the dirty rows are contiguous and form a band of height
at most P/2.

(c) (10 points) Show that the operations in phases 5 and 7 will not make a clean row dirty.

Blocks are mapped to processors so that every processor sorts blocks with row indices in the
order obtained at the end of phase 4. This is ensured because processor 0 does nothing in phase
5. For any block sorted by any processor, rows of clean zeros are already at the low row indices,
and they will stay there and clean. Likewise, rows of clean ones are the high row indices and will
stay there and clean. The only rows that are affected by these phases are the dirty rows.

(d) (10 points) Show that the band of dirty rows of D is contained within a block that is sorted in phase 5 or
phase 7.

3



Let M =
√
N/P and i be the smallest index of a dirty row. Because the band of dirty rows has

height at most P/2, the largest index of a dirty row is at most i+ P
2 −1. Each block that is sorted

in phases 5 or 7 consists of M rows. Let i′ = i modM . Consider two cases:
case 0 ≤ i′ < M − (P/2): This means that rows i through i + (P/2) − 1 are all in block
Hi divM and will be sorted in phase 7.

case M − (P/2) ≤ i′ < M : Let i” = (i div M) + 1. I will show that rows i through
i+ (P/2)− 1 are in blocks Fi” and Gi”. Because i′ ≥M − (P/2),

(i+ (P/2)) div M ≥ (i div M) + 1
= i”

Thus, row i is in block Fi” or later. The block for the shifted location of the last dirty row is
(i+ ((P/2)− 1) + (P/2)) div M We get:

(i+ ((P/2)− 1) + (P/2)) div M = (i+ P − 1) div M
≤ (i+M − 1) div M , P ≤M
≤ (i div M) + 1
= i”

Thus, row i+ (P/2)− 1 is in block Fi” or earlier. However, row i must be in a block that is
no later than the block for row i+ (P/2)− 1. Therefore, rows i through i+ (P/2)− 1 are
all in block Fi” and will be be sorted in phase 5.

4. Mutual Exclusion

(a) (10 points) Show that the Bakery algorithm is deadlock free.
This means that if one or more threads are waiting to get the lock, some thread will eventually get it.

In all of my answers, I’ll write Idle(i) to indicate that thread i is in state Idle, and likewise for
Ticketing, Spinning, and Critical.
First, I’ll show a handy invariant:

I1 = ∀1 ≤ i ≤ n. flag[i] = ¬Idle(i)

This follows immediately by considering the actions that change the variables that appear in the
invariant. If a thread is in state Idle, the only way for it to leave is by entering the Ticketing
state which it does by setting flag[i] to true. Conversely, the only point at which a thread sets
flag[i] to false is when it transitions from state Critical to state Idle. The I1 holds initially
when all threads are in state Idle and flag[i] is false for all 1 ≤ i ≤ n. Thus, I1 is an
invariant.
As stated in the homework problem, every thread repeatedly cycles between states Idle, Ticket-
ing, Spinning, and Critical.
Now, assume that there is at most one thread in the Spinning state. The precedes relation defined
in the homework problem is a total order: for any pair of threads, θi, and θj , exactly one of
θi ≺ θj , θj ≺ θi, or θi = θj holds; and if θi ≺ θj and θj ≺ θk then θi ≺ θk. A correct solution
may assume that precedes is a total order without saying anything about that.
If there is more than one thread spinning, exactly one is the least by the precedes ordering. Let
i be the index of this thread. The next time thread i executes the do-while loop at lines 11. . . 21,
either it will exit the loop, or there must be some thread j such that flag[j] and θj ≺ θi. By
the choice of i, thread j is not spinning. By invariant I1, thread j is either Ticketing or Critical.
If thread j is Critical, then we’ve established that a thread has reached its critical section. If
thread j is Ticketing then it must eventually reach the Spinning state (it cannot block waiting
for other threads). Thus, eventually, either some thread is in its critical region or every thread

4



with flag[j] true must be spinning. In the latter case, the least thread by the precedes relation
will enter its critical region the next time it executes the do-while loop.
This shows if at least one thread is spinning, then eventually some thread will be in its critical
section.

(b) (10 points) Show that the Bakery algorithm issues grants in order.
This means that if thread i1 has the lock with ticket value t1, and the next thread to acquire the lock is
thread i2 with ticket value t2, then either t1 < t2, or t1 = t2 and i1 < i2.

Once again, I’ll use an invariant:

I2.a = ∀1 ≤ i, j ≤ n. (Spin(i) ∧ ¬Spin(j)) ⇒ (θj ≺ θi)

One more critical observations is:
I2.b: Furthermore, if thread j is ticketing when thread i starts its for-loop at lines 13-19, then

thread i will continue to spin as long as thread j is ticketing.
These claims could be written with logic formulas as well, but that would involve formulas with
v, ok to enter, and the sets that had been “considered” so far by the two for-loops. CpSc
418 isn’t that formal; so, I’ll go with the English version. My claim is that I1 ∧ I2.a ∧ I2.b s an
invariant. Here’s the proof.

Observation 1: for each 1 ≤ i ≤ n, ticket[i] increases monotonically over time. This is
because when thread i assigns a new value to ticket[i] at line 10, the value of v must be
greater than or equal to the old value of the ticket.

Observation 2: for each 1 ≤ i ≤ n, the value assigned to ticket[i] is greater than or equal
to the value of the largest ticket when thread i entered the Ticketing state (at line 5), and less
than or equal to the value of the largest ticket when thread i updates ticket[i] (at line
10). This is a corollary of observation 1.

I1 is an invariant as shown for question 4a.
I2.a: because tickets only change when entering the spinning state, there are only two actions

that we need to consider: thread i transitioning from Ticketing to Spinning; and thread j
transitioning from Spinning to Critical.
Thread i transitions from Ticketing to Spinning:

The value assigned to ticket[i] is greater than or equal to the value that ticket[j]
held when thread i entered the Ticketing state (Observation 2).
If ticket[j] did not change while thread i was Ticketing, then ticket[i] ≥
ticket[j], and I2.a holds.

If ticket[j] changed while thread i was Ticketing, then thread j entered the
Spinning state while thread i was Ticketing, and clause I2.b shows that thread j
must still be spinning. Therefore, I2.a holds.

Thread j transitions from Spinning to Critical:
We need to show that for any thread i in the Spinning state, θj ≺ θi.
If thread i was Spinning for entire time that thread j was executing its for-loop at

lines 13. . . 19, then θj ≺ θi because ok to enter would have been set to false
for thread j otherwise.

If thread i entered Spinning while thread j was executing its for-loop, then we
consider the value of flag[j] when thread i inspected it at line 15.
If flag[i] was true, then θj ≺ θi must have held. This means thread i had

already reached the Spinning state, and it’s still there.
If flag[i] was false, thread i was Idle when thread j checked flag[j].

By the assumption that thread i is now Spinning, it must have transitioned
from Idle to Ticketing to Spinning. By Observation 2, ticket[i] >
ticket[j]. Therefore, θj ≺ θi, and I2.a holds.

We’ve now shown that clause I2.a is maintained by all program actions.

5



I2.b: if thread j is Ticketing when thread i starts its for-loop, then flag[j] is true (by I1),
and

Ticketing(j) ⇒ θj ≺ θi , I2.a

Therefore, thread i will set its ok to enter variable to false at lines 15. . . 17 unless thread
j leaves Ticketing.

This shows that all clauses of the invariant are maintained by all actions of all threads. Thus,
I1 ∧ I2.a ∧ I2.b is an invariant as claimed.
All three clauses hold in the initial state as well. I showed this for I1 already. For I2.a and I2.b,
this follows immediately from all threads starting in the Idle state. 2
Whew – that invariant was a bit of work! We’ll give full credit to any solution that recognizes that
no thread can enter the critical region while another thread is ticketing and that spinning threads
enter the critical region in order. Most of the complexity of my argument was handling the case
where one thread enters the Spinning state while another Spinning thread is checking the flags
and tickets of the other threads. A less detailed, more intuitive argument would be fine.
Back to the original problem. Consider the case where thread i is in the critical region with
ticket ti and thread j is the next to enter with ticket tj . If thread j is Spinning before thread j
leaves its critical section, then θi ≺ θj by I2.a. Otherwise, thread j must have been Idle when
thread i entered its critical section (by I2.b). This means that ticket[j] will be larger than
the current value of ticket[i] when thread j reaches Spinning (by Observation 2). In either
case, θi ≺ θj as required.

(c) (10 points) Show that the Bakery algorithm guarantees mutual exclusion.

I’ll prove it by contradiction. Assume that threads i and j (with i 6= j) are both in state Critical.
One of them must have been the last to enter state Critical – I’ll assume that thread j was the last
to enter state Critical. Because threads enter the critical region in order, we have θi ≺ θj . This
means that flag[i] must have been false when thread j checked it at line 15. From I1, thread
i1 was in state Idle when thread j was at line 15. From Observation 2, ticket[i] was set to a
value greater than ticket[j] at line 10. Therefore θj ≺ θi. A contradiction.
Because a violation of mutual exclusion implies a contradiction, mutual exclusion cannot be
violated.

(d) (10 points) Show that if the statement

5: flag[i] = true;

is moved until after the for loop at lines 7–9, then mutual exclusion is not guaranteed.

Observation 2 from the invariant proof hints at the counter-example. When the assignment to
flag is moved, it is no longer the case that a spinning thread must wait for a ticketing thread
to finish before entering the critical region. Because two threads can compute their ticket values
concurrently and get the same ticket value, this leads to the mutual exclusion violoation.
Consider the following execution.

1. From the intial state, threads 1 and 2 both calculate values for v. Because no threads have
updated their tickets yet, they both get a value of 1.

2. Thread 2 continues and sets its flag, executes the for-loop at lines 13. . . 19. Because flag[1]
is false, thread 2’s ok to enter variable remains true at the end of the loop. Thread 2 en-
ters its critical region.

3. Thread 1 continues and sets its flag. When thread 1 executes the for-loop at lines 13. . . 19 it
finds that flag[2] is true and ticket[2] = ticket[1] = 1. Because 1 < 2, thread
1’s ok to enter variable remains true at the end of the loop. Thread 1 enters its critical
region.

4. Mutual exclusion is now violated.

6


