
CpSc 418 Homework 4 Due: Nov. 29, 2012, 11:59pm

5% extra credit if solution submitted by 11:59pm on Nov. 25.

Please submit your solution using the handin program as:
cs418 hw4

1. Scan (20 points)
Consider the decaying average operation:

yi =

i∑
j=1

αi−jxj

In Erlang:

average d(List, Alpha) -> average help(List, Alpha, 0).
average help([], ,) -> [];
average help([X | Tl], Alpha, V) ->

V2 = Alpha*V + X,
[V2 | average help(Tl, Alpha, V2)].

(a) (5 points) Let x = [0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610]. Draw a picture
showing how decaying average can be computed using scan with four processors and α = 0.1.
You can draw your diagram neatly by hand, scan it, and include it in hw4.pdf; you can draw it using a
drawing program of your choice, export it as a PDF file, and include it in hw4.pdf; or you can draw it as
ASCII-art an include it in hw4.pdf or hw4.txt.

(b) (15 points) Write a parallel version using the wtree:scan function. Here’s the stub:

average d(W, SrcKey, DstKey, Alpha) -> ok. where
W is a pool of worker processes that form a tree (i.e. W was created by wtree:create).
SrcKey is the key for accessing the distributed list of numbers to be averaged.
DstKey is the key for saving the distributed result list. Note: your implementation should work

correctly even in the case that SrcKey = DstKey.
Alpha is the weighting factor for the decaying average.

When the scan completes, each worker should have its piece of the result list in its process state with
each sublist associated with the key DstKey.

2. 0-1 Principle – extended (20 points)
In class, we defined a sorting network by starting with the identity network and adding compare-and-swap
modules. In Erlang, we can define the compare-and-swap function as:

compare and swap(A, B) when A =< B -> {A, B};
compare and swap(A, B) -> {B, A}.

Let

apply to tuple(Fun, {A, B}) -> {Fun(A), Fun(B)}

The key to the proof was that for any monotonic function, F:

compare and swap(F(A), F(B)) = apply to tuple(F, compare and swap(A, B))

1

http://en.wikipedia.org/wiki/ASCII_art

If applying F to the operands of some operation Op produces the same result as applying Op to the original
operands and then apply F to the results of Op, then we say that F commutes with Op. In particular, monotonic
functions commute with compare-and-swap.

By showing that other operations commute with compare-and-swap, we can extend the 0-1 principle wider
classes of networks:

(a) (5 points) Let

swap(A, B) -> {B, A}

For any monotonic function, F, show that F commutes with swap.
This shows that the inputs and/or outputs of a sorting network can be permuted in an arbitrary way and the
resulting network is still a sorting network. This is handy as it allows us to decompose a sorting network
into simpler sub-networks.

(b) (15 points) For sorted lists, A and B, let

my merge(A, B) -> lists:split(length(A), lists:merge(A, B)).

For any monotonic function (i.e. non-decreasing), F, show that F commutes with my merge.
This shows that if some sorting network, SN, sorts correctly, then we can replace the compare-and-swap
modules of SN with my mergemodules. The values passed between my merge values are sorted lists (or
arrays). The sorting an merging operations performed on these lists or arrays can be done by any algorithm
that we like. The sorting network shows us how to combine such operations into a parallel algorithm for
sorting.

3. Parallel sorting (40 points)
Consider the following algorithm for sorting an array, A, of N elements using P processors. For simplicity,
assume that N is a perfect square and N is a multiple of P 4, and P is even. A is arranged as a

√
N ×

√
N

array. At the end, we produce an array Z that has the same elements as A, and the elements of Z are sorted in
lexicographical order:

(i1 < i2) ∨ ((i1 = i2) ∧ (j1 < j2)) ⇒ Z(i1, j1) ≤ Z(i2, j2)

The algorithm proceeds in seven “phases” described below and illustrated in Figures 1 and 2.

Phase 1: Divide A into P blocks.
The kth block is composed of rows k

P

√
N . . . k+1

P

√
N − 1 of A, and will be denoted as Ak. Each of these

blocks has N
P elements and can be sorted by sequential processor k in

O
(
N
P (logN − logP)

)
= O

(
N
P logN

)
time to create an array Bk. For k even, Bk is in ascending lexicographical order. For k odd, Bk is in
descending lexicographical order.

Phase 2: For eachm in 0 . . . P−1, each processor k sends columns m
P

√
N . . . m+1

P

√
N−1 ofBk to processor

m. Processor m receives these blocks and assembles them into a
√
N ×

√
N
P array. We’ll write Cm to

denote the array received by processor m. For example, the block received by processor m from processor
k will form rows k

P

√
N . . . k+1

P

√
N − 1 of Cm.

Phase 3: Processor k sorts Ck by columns to produce Dk. In other words, the elements of Dk(·, j) are the
same as those of Ck(·, j) and the elements of Dk(·, j) are in ascending order. Each processor can do this
in

O
(√

N
P

√
N log(

√
N)
)

= O
(
N
P log(N)

)
time.

2

Phase 4a: For each m in 0 . . . P − 1, each processor k sends rows m
P

√
N . . . m+1

P

√
N − 1 of Dk to processor

m. Processor m receives these blocks and assembles them into a
√
N
P ×

√
N array. We’ll write Em to

denote the array received by processor m. For example, the block received by processor m from processor
k will form columns k

P

√
N . . . k+1

P

√
N − 1 of Em.

Phase 4b: Cyclically shift all rows down by
√
N

2P rows. We’ll now say that processor k holds block Fk. Note
that phases 4a and 4b could be combined into a single round of communication – I separated them to make
them easier to describe.

Phase 5: For k ∈ 1 . . . (P − 1), processor k sorts its block, Fk, into lexicographical order to produce Gk. This
takes time O

(
N
P log(N)

)
.

Phase 6: Cyclically shift all rows up by
√
N

2P rows. We’ll now say that processor k holds block Hk.

Phase 7: Processor k sorts its block,Hk, into lexicographical order to produceZk. This takes timeO
(
N
P log(N)

)
.

In this problem, you will show that the array Z is sorted into lexicographical order.

(a) (10 points) Show that at the end of phase 1, each block Bk has at most one dirty row.

(b) (10 points) Show that at the end of phase 3, all dirty rows of D are contained in a band of height at most
P/2. Hint: each block Ck consists of P sub-blocks received from the P processors. As shown in part 3a
each of these blocks has at most one dirty row. Now, recall our analysis of Shear sort from class.

(c) (10 points) Show that the operations in phases 5 and 7 will not make a clean row dirty.

(d) (10 points) Show that the band of dirty rows of D is contained within a block that is sorted in phase 5 or
phase 7.

A few remarks:

• The total processing time (not counting communication) is O(NP logN).

• We might look at the time for communication on HW5.

• In the figures, the small squares of the arrays correspond to data elements.

• I drew solid arrows to indicate the direction of increasing data values. A solid arrow includes the values of
all of the elements that it crosses.

• Dashed arrows are “wrap-around” jumps to continue the sequence of ascending values.

• Which data is held by which processors is indicated by the color of the squares. Thus, changing the color
scheme corresponds to sending and receiving data blocks. In particular, the cyclic shifting of rows to
produce array F and H is indicated by shifting the colors for the processors (in the opposite direction).

4. Mutual Exclusion
In class, we have discussed Dekker’s mutual exclusion algorithm which guarantees mutual exclusion for two
clients. Lamport’s “Bakery Algorithm” works with any number of clients. Figure 3 shows the algorithm for
N clients. The algorithm models entering a bakery and taking a ticket with a number on it. When a number is
called, the person with that ticket gets service. In Lamport’s version, “taking a ticket” is done by checking the
numbers on the tickets for every thread that is currently waiting or in its critical section. Let v be the maximum
such ticket value. The thread trying to enter the lock gives itself a ticket number of v+1. The thread then spins,
checking to see when all threads with lower ticket numbers have completed. When the thread has the lowest
ticket number among those waiting, it is granted the lock.

The for loop at lines 7...9 can check the tickets for the other processors in any order, and other threads can
change their ticket numbers while a thread is executing the loop. For each j, v is compared with a value that
ticket[j] had sometime during the execution of the loop.

A remarkable feature of the algorithm is that it allows multiple threads to get the same ticket number! This is
because there is no mutual exclusion for the process of checking tickets and choosing a number. If two threads

3

: cyclically shift rows downF

: columns sortedD

: original, unsorted arrayA B: row−blocks sorted

: row blocks reformedE

: column blocks formedC

B0

B1

B2

B3

0

3C0C 1C

0E

1E

2E

3E

F0

F

3F

F2

F1

3D0D 1D 2D2C

0A

1A

2A

3A

9 1112131415

2
1
0

i

15
14
13
12
11
10
9
8
7
6
5
4

to row 2
to row 3

to row 6
to row 5 from row 7

from row 6
from row 5

to row 4

to row 12
to row 13
to row 14

from row 13

from row 15
from row 14

1
0

1514131211109

3
2
1

8765

0

1514131211109876543210

151413121110987

j
i

6 j
i

543210

15
14
13
12
11
10
9
8
7
6

4j

j
i i

32

j
i

10

j

0
1
2
3
4
5
6
7
8
9

5

10

4
3

11
12
13
14

2

15

1
0

15141312111098765432

from row 8

from row 10
from row 9

from row 0

from row 2
from row 1

to row 9
to row 10
to row 11

to row 1
to row 2
to row 3

to row 6
to row 5 from row 7

from row 6
from row 5

to row 4

to row 12
to row 13
to row 14

from row 13

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 101112131415

9
8
7
6

from row 15
from row 14

10

15
14
13
12
11
10
9
8
7
6
5
4
3
2

from row 8

from row 10
from row 9

from row 0

from row 2

5
4
3

from row 1

to row 9
to row 10
to row 11

to row 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 10

Figure 1: Sorting: phases 1. . . 4

4

: sort blocks 1...(P−1)G

H: cyclically shift rows up

: sort row blocksZ

0Z

1Z

2Z

3Z

0H

1H

2H

3H

0

1G

2G

G3

G

0G

15

i

1

from row 0

from row 2
from row 1

to row 1
to row 2
to row 3
to row 4
to row 5
to row 6

from row 3

from row 5
from row 4

from row 6

from row 8
from row 7

to row 7
to row 8
to row 9
to row 10
to row 11
to row 12

from row 9

from row 11
from row 10

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

i

j

15141312111098

0 1 2 3 4 5 6 7 8 9 101112131415

765j 0

from row 12

from row 14
from row 13

to row 13
to row 14
to row 15

4

0
1
2

4
3

5
6
7
8
9

10
11
12
13
14
15

i

3

j

2

to row 11
to row 12
to row 13

from row 2

from row 4
from row 3

to row 3
to row 4
to row 5

to row 11
to row 12
to row 13

from row 2

from row 4
from row 3

to row 3
to row 4
to row 5

from row 6

from row 8
from row 7

to row 7
to row 8
to row 9

from row 10

from row 12
from row 11

from row 6

from row 8
from row 7

to row 7
to row 8
to row 9

from row 10

from row 12
from row 11

0
1
2
3
4
5
6

0 1 2 3 4 5 6 7 8 9 101112131415

7
8
9

10
11
12
13
14

Figure 2: Sorting: phases 5. . . 7

5

0: Initially:
1: ∀ i ∈ {0 ...(N-1)}: flag[i] = false;
2: ∀ i ∈ {0 ...(N-1)}: ticket[i] = 0;
3:
4: lock(int i) { % thread i wants the lock
5: flag[i] = true; % let the world know my intention to acquire the lock
6: v = 0;
7: for j = 0..(N-1) in any order { % find the largest ticket issued so far
8: v = max(v, ticket[j]);
9: }

10: ticket[i] = v+1; % take the next ticket number
11: do {
12: ok to enter = true;
13: for j = 0..(N-1) in any order { % anyone with a smaller ticked waiting?
15: if(flag[j] AND (j 6= i)
16: AND ((ticket[j] < ticket[i])
17: OR ((ticket[j] == ticket[i]) AND (j < i))))
18: ok to enter = false; % we still need to wait
19: }
20: } while(NOT ok to enter);
21: }
22:
23: unlock(int i) { % thread i is releasing the lock
24: flag[i] = false;
25: }

Figure 3: Lamport’s Bakery Algorithm

have the same ticket number, the one with the lower thread index goes first. Of course, that’s a claim that needs
a proof, and that’s the point of this question.

For the questions below, assume that all threads use the lock correctly. This means that thread i calls lock(i)
and unlock(i) in alternation zero or more times. The first such call is a call to lock(i). Once the thread
acquires the lock it must eventually call unlock(i). We say that a thread is in its critical section when a call
to lock(i) has returned and the thread has not yet called unlock(i).

(a) (10 points) Show that the Bakery algorithm is deadlock free.
This means that if one or more threads are waiting to get the lock, some thread will eventually get it.
To show this, consider a state where no thread has the lock but one or more threads are waiting. This means
that one or more threads are executing the do...while loop at lines 12. . . 21 of the lock function. Show
that there is one thread that will execute the body of this loop at most one more time before acquiring the
lock.

(b) (10 points) Show that the Bakery algorithm issues grants in order.
This means that if thread i1 has the lock with ticket value t1, and the next thread to acquire the lock is
thread i2 with ticket value t2, then either t1 < t2, or t1 = t2 and i1 < i2.
Note that deadlock freedom and in-order-granting ensures that all requests are eventually granted.

(c) (10 points) Show that the Bakery algorithm guarantees mutual exclusion.
This means that two threads cannot be in their critical regions at the same time. The grants-in-order
property helps prove this one.

6

(d) (10 points) Show that if the statement

5: flag[i] = true;

is moved until after the for loop at lines 7–9, then mutual exclusion is not guaranteed.

Note: for all of these, it’s useful to note that each thread repeatedly cycles through the following four “states”:

Idle: Starting at line 25 of unlock (having just set flag[i] to false), including any non-critical-section
code of the application, and ending at line 5 of lock (just before setting flag[i] to true. Both ends
are inclusive (i.e. the idle state includes lines 5 and 25). Note that a thread has no obligation to call lock.

Ticketing: Starting at line 6 of lock (having just set flag[i] to true) and continuing to line 10 (just before
setting ticket[i]). A thread in the ticketing state must eventually complete these operation and enter
the spinning state.

Spinning: Starting at line 11 of lock (having set ticket[i] and ending at line 20 if ok to enter is true.
A thread in the spinning state must eventually try the loop body (i.e. it can’t take forever to get to its next
instruction).

Critical: Starting at line 21 of lock, including the thread’s critical section, and ending at line 24 of unlock.
A thread that is in its critical section must eventually finish the critical section and call unlock.

You can state that each thread cycles through these four “states” (or code regions) in the order described without
any further proof. Now, some handy lemmas (you need to prove them if you want to use them):

• flag[i] is false when thread i is in the idle state and true otherwise.

• We will say that thread i precedes thread j if ticket[i] < ticket[j], or ticket[i] = ticket[j]
and i < j. If thread i is idle or critical and thread j is spinning, then it can be shown that thread i precedes
thread j.

7

