
CpSc 418 Homework 2 Due: Oct. 10, 2013, 11:59pm

Four questions, 105 points. 5% extra credit if solution submitted by 11:59pm on Oct. 6.

Please submit your solution using the handin program. Submit the your solution as
cs418 hw2

Your submission should consist of the following two files:

hw2.erl – Erlang source (ASCII text).

hw2.txt or hw2.pdf – plain, ASCII text or PDF.

The first file, hw2.erl, will be your solution to the programming part of the assignment. Unless otherwise stated, you
may use any functions that you like from the Erlang library, for example, functions from the lists module.
The second file, hw2.txt or hw2.pdf should give your solutions to the written parts of the assignment.
No other file formats will be accepted.

1. Parallel Corners (35 points).

(a) (20 points) Use wtree:reduce and your solution to the count corners problem from homework 1 to
implement a parallel version of the corner counting problem.
Your solution should be a function:

count corners(Key, W) -> integer()

Where Key is the association key for a list that’s been distributed across the workers of W, and W is a worker
pool.
If you don’t have a working solution to the sequential count-corners problem, you may use the solution that
will be posted by Sept. 28, and state that you are doing so.

(b) (5 points) Measure speed-up versus number of Erlang processes in the worker pool when using 1, 2, 4, 8, 16,
64, and 256 processes running on any of lin01.ugrad.cs.ubc.ca through lin25.ugrad.cs.ubc.ca
with a list of 100,000 elements. Each of these machines has a quad-core, two-way multithreaded Intel Core i7
processor.

(c) (5 points) For the number of threads that achieved the highest speed-up, what is the shortest list that achieves
at least 90% of this speed-up. Because timing measurements are inexact, you just need to get a number that is
reasonably close to the shortest such length, and a speed up that is reasonably close to 90%. State what you
mean by reasonable.

(d) (5 points) Repeat parts b and c running on gambier.ugrad.cs.ubc.ca. Gambier has a SPARC T2
processor with eight cores, each of which is eight-way multithreaded. It’s an old machine; so it won’t be as
fast in absolute terms as the linux boxes, but it demonstrates multi-threading nicely.

Recap of count corners from homework 1. Let L be a list of N elements. We will say that the Ith element of L is
“ascending” if it is less than its successor, descending if it is greater than its successor, and “flat” if it is equal to its
successor.

An element is a “corner” if:

• it is an ascending element, followed by zero or more flat elements followed by a descending element, or

• it is a descending element, followed by zero or more flat elements followed by an ascending element.

The count-corners problem is to determine the number of corners in a list. If the length of the list is less than 3, then
the number of corners is 0.

2. Non-parallelizable code (25 points) For each question below, and answer with two significant digits of accuracy
(e.g. 42,000,000) is acceptable. Show your work in enough detail that someone reading your solution can recon-
struct your answers.
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(a) (5 points) Consider a sequential function f(L) that when run on a list of length N has a runtime of 3N +
5N log2 N nanoseconds. What is the length of the longest list for which f can run in at most 10 seconds?

(b) (5 points) Assume that the linear time part is non-parallelizable, but that the N log N part can be perfectly
parallelized. Then, the run time on P processors is 3N + 5N

P log2 N. What is the length of the longest list for
which the parallel version of f can run in at most 10 seconds when P = 100? What is the speed-up for this
choice of N and P ?

(c) (5 points) Now, consider a sequential function g(L) that when run on an input of size N has a runtime of
10N+ N2.5 nanoseconds. What is the largest input size for which g can run in at most 10 seconds?

(d) (5 points) Assume that the linear time part is non-parallelizable, but that the N2.5 part can be perfectly paral-
lelized. What is the largest input size for which the parallel version of g can run in at most 10 seconds when
P = 100? What is the speed-up for this choice of N and P ?

(e) (5 points) Which of f or g achieved the larger speed-up when considering problem sizes that must complete
within 10 seconds? For which of f or g could the largest tractable problem size be increased by the greatest
factor?

3. K Largest Elements of a List (35 points)
We’ve described the problem of finding the K largest elements of a list or array as an example of a reduce
operation. In this assignment, we’ll look at the sequential version; we’ll examine parallel implementations in
homework 3. Let maxk(L, K) return the K largest elements of L in ascending order. If length(L) < K,
then maxk(L, K) should return all of the elements of L in ascending order. The function hw2:maxx(L, K)
provides one implementation of the maxk function.

(a) (5 points) Show that the worst-case run time for hw2:maxx(L, K) is

O ((K log K) + (N− K)K)

where N = length(L) and I’m assuming K ≤ N. Note that if log K � N, the worst-case runtime can be
simplified to O((N− K)K), and if K� N, the worst-case runtime can be further simplified to O(NK).
Hint: The worst-case is achieved if the elements of L are in ascending order.

(b) (5 points) Measure the run-time for hw2:maxx(L, K) for

length(L) ∈ {10000, 20000, 30000, 50000, 70000, 100000}
K ∈ {500, 1000, 1500, 2000}

(a total of 24 data points). For all of these cases, log K � N. Find a constant a so that the measured run-time
is approximated by

T ≈ a(N− K)K

If you can’t find a good approximation, state why. Please state what machine you ran the experiments on:
either the name of a CS department machine, or state the type of CPU and clock frequency. For example, it’s
fine to run the experiments on your own computer.

(c) (10 points) For large lists and large values of K, we can improve the execution time by building a heap. The
function hw2:list to heap converts a list to a heap. This heap has four kinds of nodes:

[Max, Left, Right] where Max is the largest value in the sub-heap rooted at this node; Left is the
left sub-heap, and Right is the right sub-heap. By convention, Left and Right are chosen so that
Left contains the largest element of the sub-heap rooted at this node.

[Max, Min] there are exactly two elements in this sub-heap with Max ≥ Min.
[V] there is exactly one element in this sub-heap, and it has the value V.
[] this heap is empty. We never have [] as a sub-heap.

For example,
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1> hw2:list to heap([1,-3,14,207,23,18,17,17,93,5,11]).
[ 207,

[207, [ 207, [207, 14], [1, -3]]
[ 23, [23, 18], [17, 17]]]

[93, [ 93, 5], [11]]]

If H is a heap, then hw2:get max(H) returns the largest element of H – if H is empty, then hw2:get max(H)
returns the atom ’-infinity’. The maximum depth of a node in the heap returned by hw2:list to heap(L)
is dlog2 length(L)e (assuming length(L) > 1).
Write a function, hw2:del max(Heap) that returns NewHeap, where NewHeap has all of the elements of
Heap except for the largest. If Heap had M identical elements that were the largest, then NewHeap will have
M-1 such elements. The maximum depth of a node in NewHeap must be less than or equal to the maximum
depth of any element of Heap. Note that this doesn’t require you to keep NewHeap nicely balanced after a
large number of del max operations.
Your implementation of del max(Heap) function should run in time O(height(Heap)), where
height(Heap) is the maximum depth of any node in Heap.
Hint: My implementation of del max(Heap) is three lines of Erlang. If yours is more than 10, you should
ask for help.

(d) (10 points) Use your hw2:del max function to implement hw2:maxy(L, K). This function should im-
plement the maxk function with a time complexity of

O (N +K logN)

Hint: My solution uses a helper function, and the two functions combined use a total of five lines of code.
Again, if your solution seems much more complicated than this, ask for help.

(e) (5 points) Measure the run-time for your hw2:maxy function for the same test cases as for question 3b. You
can use random lists as well as those generated by lists:seq. Find constants b1 and b2 so that the measured
run-time is approximated by

T ≈ b1N + b2K log2 N

If you can’t find a good approximation, state why. Please state what machine you ran the experiments on:
either the name of a CS department machine, or state the type of CPU and clock frequency. It’s fine to run the
experiment on your own computer.

Note: if the hw2:maxx(L, K) function is run with a random list for L, then the run-time is O(K2 log(N/K)),
where N = length(L) and assuming K� N. This means that the simple algorithm (hw2:maxx) can work quite
well for random lists and moderately small values of K.

4. Feedback (10 points)
For problem on this assignment:

(a) How long did it take you to solve the problem?

(b) Please rate each problem on a scale of 0 to 5 where

0 – Worthless tedium.
1 – Too much work, and I learned little.
2 – A typical homework problem.
3 – Definitely had a favorable learning/effort ratio.
4 – I learned a lot and had fun doing so.
5 – Wow, amazing, life changing, or similar.

Feel free to add other comments as well.
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