CpSc 418 Homework 1 Due: Sept. 26, 2013, 11:59pm

80 points + 6 extra credit.
5% extra credit for problems 1, 2, and 4 if solution submitted by 11:59pm on Sept. 23.

Please submit your solution using the handin program. Submit the your solution as
cs418 hwl
Your submission should consist of the following two files:

hwl.erl — Erlang source (ASCII text).
hwl.txt or hwl.pdf — plain, ASCII text or PDF.

The first file, hwl.erl, will be your solution to the programming part of the assignment.

Unless otherwise stated, you may use any functions that you like from the Erlang library, for example, functions from the
1ists module.

The second file, hwl . txt or hwl.pdf should give your solutions to the written parts of the assignment.

No other file formats will be accepted.

1. Tail Recursion Optimization(25 points). Consider the following two functions to compute the sum of the elements
of a list:
% sum_hr (List) -> number — sum of the elements of List, head-recursive version
sum_hr([]) —-> 0;
sum_hr ([Hd | Tl]) -> Hd + sum_hr(T1l).
% sum_tr (List) -> number — sum of the elements of List, tail-recursive version
sum_tr(List) -> sum tr (0, List).
sum_tr (s, []) —> S;
sum_tr (S, [Hd | Tl]) —-> sum tr(S+Hd, T1).

The first version, sum_hr is the one that most people find easier to read. This form is called “head recursion”
because the recursive call occurs at the beginning of the function — note that sum_hr needs make the recursive call
before it can perform the addition to produce the final result.

The second version, sum_t r is called “tail recursion” because the recursive call occurs at the very end of evaluating
the function. Thus, the value returned by sum_tr is the value returned by the recursively called function. This
allows the compiler to perform a very useful optimization:

Instead of creating a new stack frame for the recursive call, the compiler generates code to re-use
the existing stack frame, but sets it up for the next iteration of the function.

Effectively, the compiler converts tail-recursive functions into while loops. This is why programmers often use the
tail-recursive form for a function, even though the head-recursive version may be easier to read.

With this optimization, I would expect sum_tr to be faster than sum_hr. So, I tried it. We can measure
how long it takes a piece of code to execute by using the time_it:t (Fun, HowLong) function from the
CpSc 418 Erlang library. See notes about getting this library at the end of this assignment. For example,

1> L = lists:seqg(1,100), ok. % Thelist[1, 2, ..., 100]
ok % ButI suppressed the long Erlang spew by appending , ok

2> time_it:t (fun() -> hwl:sum hr (L) end, 1.0)
[{mean,3.450424401342413e-6},{std, 9.348702447983752e-7}]
3>


http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/time_it.html#t-2
http://www.ugrad.cs.ubc.ca/~cs418/resources/index.html

time_it:t (fun() —-> hwl:sum_hr (L) end, 1.0) callshwl:sum_hr repeatedly with the argument
L until the total time reaches 1.0 seconds. It then reports the average time per call and standard deviation. For the
example above, running Erlang on my laptop, the average time per call of 3.45us, with a standard deviation of
0.935us. Then, I tried the tail-recursive version.

3> time_it:t (fun() -> hwl:sum tr (L) end, 1.0)
[{mean,3.5942721793006116e-6},{std,1.1329852144921657e-6}] 4>

The average time per call is 3.59us — the tail recursive version is 4% slower than the head-recursive version!

OK, the compiler is doing some serious optimizations. So, I had to revise the problem to show why tail recursion
matters (and when it doesn’t).

(a) (10 points): write a function
N
add_hr (N) -> ZI
=1

using head-recursion. Actually add up all the numbers. Don’t just solve the recurrence and write the simple
formula, %(N 2 4 N). Then, write t ime_add_hr (N) that uses t ime_it : t to determine the average time
per call of add_hr (N) with a total time of 1.0 seconds.

Now write the tail recursive version

N
add_tr(N) —-> ZI
I=1

and time_add_tr (N) that reports the average time per call of add_tr (N).

In hwl.txt or hwl.pdf briefly summarize your observations about which one is faster and by how much.
(b) (10 points): Even though sum_tr was not any faster than sum_hr, it does save on stack space — it just

took me a bit of time to figure out how to measure this. I wrote two functions and have included them in the

template for hwl.erl:

stack_size () —> current size of the stack for this process
sum_help (N, {Tally, MaxStack}) -> {NewTally, NewMaxStack}

NewTally = Tally + N
NewMaxStack = max (MaxStack, -current stack size)

o° o

Thus, sum_help does the addition for the sum, and keeps track of the largest stack-size encountered so far.
To get an initial value for {Tally, MaxStack}, my code uses {0, stack_size()}. Stack size is
reported in Erlang words.

Write a function sum_hr_smem(List) —-> {Total, MaxStack} where Total is the sum of ele-
ments of List (computed with a head-recursive implementation), and MaxStack is the maximum stack size
that occurred while doing the computation.

Likewise, write a function sum_tr_smem (List) —-> {Total, MaxStack} thatreturns the sum of the
elements of the list and the maximum stack size for a tail-recursive implementation.

Try both functions for various sized lists. Report your datain hwl.txt or hwl.pdf. Foreach of sum_hr (L)
and sum_tr (L), give a simple formula for the stack size as a function of the length of L.

(¢) (5 points): In Erlang, it is common to write a function for a “reactive process” with the form:

my_process (Args) —>
receive % wait until we get a message requesting us to do something
A_Message ->
handle the message,
send responses,
compute NewArgs

end, my_process (NewArgs). $% continue with the next message



Why is it very important to write this as a tail-recursive function? In other words, give a brief explanation of
what can go wrong if my_process is not tail recursive. Include your answer in hwl.txt or hwl.pdf.

2. List Flattening (0 points).
Problem cancelled: I accidentally included the solution in hwl.erl.

3. Counting Corners (30 points). Let I be a list. We will say that the N*” element is “ascending” if it is less than
its successor, descending if it is greater than its successor, and “flat” if it is equal to its successor. Note that the last
element is neither ascending, descending, nor flat. So, we can map a list of N elements to a list of N-1 atoms of
values a (for ascending), d (for descending), or £ (for flat). For example,

Let L = [1, 2, 3, 0, 18, 16, 25, 32, 42, 42, 42,-5]
ADF = [a, a, 4, a, d, a, a, a, f, f, d]

ADF gives the ascending, descending, flat characterization for the corresponding elements of L.

An element is a “corner” if:

e itis an ascending element, followed by zero or more flat elements followed by a descending element, or

e itis a descending element, followed by zero or more flat elements followed by an ascending element.

For example, L has five corners as shown below.

(1, 2, 3,

2, 3, 0, 18, 16, 25, 32, 42, 42, 42, -5]

L N 1)

(a) (10 points) Write a function, count_corners (L) —> Ncorners that returns the number of cor-
ners in list L. If L is the empty list, then count_corners (L) -> 0. Your implementation of
count_corners (L) should run in linear time in the length of L.

(b) (10 points) Write a function,

check _corners (L) -> {First , StartSlope, Ncorners, EndSlope, Last}
where

First is the first element of L;

StartSlopeis
+1 if L starts with zero or more flat elements followed by an ascending element;
-1 if L starts with zero or more flat elements followed by an descending element;
0 if all elements of L are flat;

Ncorners is count _corners (L);

EndSlope is
+1 if L ends with an ascending element followed by zero or more flat elements;
-1 if L ends with a descending element followed by zero or more flat elements;
0 if all elements of L are flat;

Last is the last element of L.

If L is the empty list, then check_corners (L) should return the atom empty.

(c) (10 points) Write a function, merge_corners (C1, C2) -> C12 where C1, C2, and C12 are tuples of
the form {First, StartSlope, Ncorners, EndSlope, Last} or the atom empty as returned
by check_corners. If L1 and L2 are lists, then

merge_corners (check_corners (Ll), check_corners(L2))
should produce the same result as check_corners (L1 ++ L2).



Note: Erlang has some special rules when mixing integer and floating point values. In particular, 3 == 3.0 pro-
duces the value t rue, but 3 does not match 3. 0. You can use the = : = operator to check for matching equivalence.
For example:

4> 3 == 3.0.

true

5> 3 = 3.0.

**x exception error: no match of right hand side value 3.0

6> 3 =:= 3.0.

false
I've written my solution so that all comparisons are equivalent to using <, ==, and >. I will not write test cases that
mix integer and floating point numbers in a way that the difference between == and =:= matters. However, I'm

pointing it out here because there are ways you could write code that would cause “strange” things to happen. For
example:

f(X, Y) when X < Y -> ...; % less-than case
f(X, X) => ...; % equalscase
f(X, ¥Y) —> .... % greater-than case —- NOT NECESSARILY

Note that £ (3, 3.0) and £ (3.0, 3) will both evaluate the case that is supposedly for X > Y. The “right”
way to write this is:

f(X, Y) when X < Y -> ...; % less-than case
f(X, Y) when X == -> ...; % equalscase
f(X, YY) —> .... % greater-than case

Now £ (3, 3.0) and £ (3.0, 3) will both evaluate the “equals” case.

. Reduce (25 points). For integers N > 0 and M > 0, let

collatz (N, 0) —-> N;
collatz (N, M) when (N rem 2 == 0) -> collatz (N div 2, M+1);
collatz (N, M) when (N rem 2 == 1) -> collatz(3*N + 1, M+1).

The Collatz Conjecture| states that for any N > 0 there exists an M > 0 such that collatz (N, M) = 1. As of
today, the conjecture remains open (and probably will stay that way for quite a while).

In the template for hwl.er1, I have provided functions:

collatz len(N) when is_integer (N) -> the smallest M such that collatz (N, M) =1.

collatz_max (Lo, Hi) —-> {N, K}. % Where Lo <N < Hi;collatz_len(N) =K;
% and for every J with Lo < J < Hi, collatz_len (J) < K. Inthe case of “ties”,
% the smallest value of N that achieves the longest collatz_len is returned for N.

along with some other versions that take lists as arguments or provide a default value for Lo. Note: if you call
collatz_len (N) with a choice of N that never reaches one, the collatz_len function will tail-recurse for-
ever. If you find such a value for N, please let me know — you will get lots of extra credit. ®

Using these functions, we can find that the integer that is less than or equal to 10 with the longest Collatz-path to 1
is nine, with a length of 19. The integer less than or equal to a million with the longest Collatz-path to 1 is 837,799,
with a path length of 524.

Use the functions in the workers and wt ree modules from the course library (see
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/index.html
), to implement:



http://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/index.html

collatz_max_par (Lo, Hi, W) -> {N, K}

where W is a worker-pool from wt ree : create. Your solution should be an example of using the wt ree : reduce
function.

5. (6 points, extra credit). For each of problems 1, 3, and 4 on this assignment:

(a) How long did it take you to solve the problem?

(b) Please rate each problem on a scale of 0 to 5 where
0 — Worthless tedium.
1 — Too much work, and I learned little.
2 — A typical homework problem.
3 — Definitely had a favorable learning/effort ratio.
4 — I learned a lot and had fun doing so.
5 — Wow! I’ve discovered a new way to think!

Feel free to add other comments as well.

The CpSc 418 Erlang Library

Getting the library: Go to
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/source.html
You can download the modules individually, or get a tar’d, gzipped archive at
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/erl.tgz

Getting the documentation: Go to
http://www.ugrad.cs.ubc.ca/~csd418/resources/erl/doc/index.html
This is generated by the ledoc| utility from comments in the source files.

Setting your Erlang path:
Use the function: code:add_path (Directory) where Directory is a string that gives the pathname to the
directory with Erlang modules that you want on your path. The modules need to be compiled — the Erlang run-time
looks for .beam files, not . er1 files.

e ['ve found it convenient to write an Erlang module called path that exports one function with no arguments
called path that sets my path. Then, I just give the command

1> path:path().
at the beginning of my Erlang session and I get the class library modules in my path.

e Or, you could set your ERL_PATH environment variable.

e Or, you can use the —pa or —pz options when you give the er1 command. See
http://www.erlang.org/doc/man/erl.html

Why?

Question 1: Introduce the concept of tail-recursion. It’s important to understand that compilers for functional languages
perform tail-call optimization. As seen in this problem, the impact on time is fairly small (for Erlang). However,
the impact on memory usage can be much more important.

It used to be that tail-call optimization produced code that was way faster than head-recursive code. This is why you
can come across code from experienced functional programmers who go way out of their way to make a function


http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/source.html
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/erl.tgz
http://www.ugrad.cs.ubc.ca/~cs418/resources/erl/doc/index.html
http://www.erlang.org/doc/apps/edoc/chapter.html
http://www.erlang.org/doc/man/erl.html

tail-recursive. More advanced compilers have closed the speed gap, and as we saw here, in many cases pretty much

eliminate it. Of course, the memory usage still matters. See
http://www.erlang.org/doc/efficiency_guide/myths.html

for a more complete discussion.

Note that tail-call elimination goes beyond converting a recursive call to a while loop. Anytime the final expression
of a function is a call to another function, the tail-call optimization can replace the call with the operations or
replacing the current stack frame with the context for the next function and then “jumping” to the entry point of the
next function.

Question 2: CANCELLED
This was supposed to be a follow-up to question 1 to help you understand the performance implications of common
operations in a functional language. The short version is:

e If you construct a list with [Hd | T11], the Erlang run-time can perform this operation in O(1) time. Basi-
cally, it creates a new list cell, sets the “value” pointer to point to Hd, and sets the “next” pointer to point to
T1. Note that we can have as many incoming pointers to a list as we want. Erlang is functional. That list will
never change. Adding another pointer to it doesn’t change its value. So, many lists can share a suffix.

e Likewise, for a non-empty list, L, the Erlang run-time evaluates hd (L) and t1 (L) in O(1) time.

e If you construct a list with L1 ++ L2, the Erlang run-time can needs to make a copy list L1; let’s call this
list L1b. The last list cell of L1 has its next pointer set to null. The last cell of the copy, L1b, gets its next
pointer set to point to L2. Creating L1b takes time O(length (L1) ), and the time to evaluate L1 ++ L2
is O(length (L1) ). Note that this can be smaller than O(length (L1) + length (L2)) in the case that
length (L1l) < length (L2). Note that L1b is a “shallow” copy of L1. If some of the elements of L1
are themselves lists or tuples, list L1b will have pointers to the same lists or tuples. Again, the run-time is
taking advantage of the fact that Erlang is functional and it knows that these lists and tuples will never change.

If you miss question 2, you can get it at:
http://www.ugrad.cs.ubc.ca/~cs418/2013-1/hw/1/gl.pdf

Question 3: This is an opportunity to do something a little more involved using functions, lists, tuples, and pattern
matching. I also plan to combine it with reduce in homework 2. I found writing merge_corners to be the one
that needed the most thought. There is an “obvious” solution that enumerates the patterns for all of the combinations
of L_endslope,R_startslope,and sign (R_first - L_last), butthatends up with 27 cases plus two
more for the cases when the left or right arguments are the atom empty.

Hint: I originally used atoms for the slopes: up, down, and £1at. I found that using the integers +1, —1, and 0
made it possible to combine many of the cases together. My solution has two patterns for empty arguments, and
one for everything else. My “everything else” case has four if statements.

Question 4: I wanted to make sure that there was something with processes, communication, and parallel computing on
this assignment. I tried to make a problem that wasn’t trivial, but that won’t require large amounts of code.

Question 5: Let me know what you find educational and what you enjoy. I’ll take that into account as I devise other
homework problems.

I did extensive revisions of the material for this week’s lectures to incorporate the mini-assignment approach. Unfor-
tunately, I ended up needing to print this assignment before I had time to thoroughly proof-read it. My apologies for the
typos and corrections.


http://www.erlang.org/doc/efficiency_guide/myths.html
http://www.ugrad.cs.ubc.ca/~cs418/2013-1/hw/1/q1.pdf

