
CpSc 418 Final Exam December 5 2013

Solution set

1. Reduce and Scan (24 points) One of the problems below can be solved using reduce, the other can be solved
using scan. Identify which is which. For the problem that can be solved using reduce, describe the Leaf and
Combine, and Root functions – the Root function may (or may not) be the identity function. For the problem
that can be solved using scan, describe the Leaf1 and Leaf2, and Combine functions.

(a) (12 points) Given a list of numbers that is distributed across the worker processes, compute a new list
whose ith element is the maximum element up to and including the current one minus the minimum
element up to and including this one. I’ll call this function gap and here are a few examples:

gap([5,2,6,18,-3,4,8,-1,20]) -> [0,3,4,16,21,21,21,21,23];
gap([]) -> [];
gap([42]) -> [0];

Solution The problem is an instance of scan. In my solution, the Leaf1 function reads the list and
returns a tuple of the form {Min, Max} where Min is the minimum element of the list and Max
is the maximum element. If the list is empty, Leaf1 returns the atom ‘empty‘. The Combine
function takes two such tuples (or ‘empty‘ atoms) and returns the maximum and minimum for the
combined subtrees (or ‘empty‘ if both are empty). The Leaf2 function takes an AccIn value that
is the tuple with the maximum and minimum for everything to the left of this leaf. It computes the
gap for each element and stores is with with the given key. I wrote a helper function, gap(List,
Accin) that returns a tuple of the form {GapList, {Min, Max}}, where GapList is the gap
for each element of List, and the {Min, Max} tuple is the tuple produced by Leaf1 or Combine
(or the atom ‘empty‘).

gap(L, AccIn) -> mapfoldl(
fun

(E, empty) -> {0, {E, E}};
(E, {Min, Max}) ->

X = min(Min,E),
Y = max(Max, E),
{Y-X, {X, Y}}

end, AccIn, L).

gap(W, Src, Dst) ->
wtree:scan(W,

fun(S) -> % Leaf1
element(2, gap(workers:get(S, Src), empty))

end,
fun(S, AccIn) -> % Leaf2

workers:put(S, element(1, gap(workers:get(S, Src), AccIn)))
end,
fun % Combine

(empty, Right) -> Right;
(Left, empty) -> Left;
({Lmin, Lmax}, {Rmin, Rmax}) ->
{min(Lmin, Rmin), max(Lmax, Rmax)}

end
).

Note: I haven’t tried compiling and running this code yet – you didn’t have that opportunity on the
exam. When I do, there will almost certainly be some minor error. I’ll fix them and might add



that version. You can think of the difference between the code written here and the final version as
indicating the range of what I will consider to be an acceptable solution. Of course, there are many
other valid implementations other than the one shown here. They will get full credit as well.

(b) (12 points) Given a list of numbers, report the number of consecutive Pythagorean triples. If x, y, z
are consecutive elements of the list, then they are a Pythagorean triple iff x2 + y2 = z2. Here are few
examples:

nPythag3([1,2,4,6,8,10,11,3,4,5,12,13,14]) -> 3; % [6,8,10], [3,4,5], [5,12,13]
nPythag3([1,-2,3,-4,5]) -> 1; nPythag3([0,1,0,1,0,1,0,1]) -> 3;

Solution The problem is an instance of reduce. In my solution, each leaf worker process produces a tuple
of the form {First2, N triple, Last2} where First2 is a list of the first two elements of
the worker’s piece of the lists; Last2 is a list of the last two elements of the worker’s piece of the
lists; and N triple is the number of Pythagorean triples in the worker’s piece of the list. If the
worker’s piece of the list has fewer than two elements, then Leaf just returns the list. The Combine
function combines these in the “obvious” way. Have a different pattern for leaves with short lists
makes handling the special cases fairly straightforward. The Root function extracts the count from
the triple, or if the top-value is a list, returns 0. Finally, I wrote nPythag3(List), a sequential
implementation which is used by Leaf and Combine.

nPythag3(L=[A, B | ]) ->
{N, Last2} = nPythag3(L, 0),
{[A,B], N, Last2};
nPythag3(L) -> L.
nPythag3(W, Src) ->

wtree:reduce(W,
fun(S) -> nPythag3(workers:get(S, Src)) end, % Leaf
fun % Combine

({LL, LN, LR}, RL, RN, RR) ->
{LL, LN + element(2, nPythag3(LR++RL)) + RN, RR};

(L, {RL, RN, RR}) ->
{First2, MidN, RL} = nPythag3(L++RL),
{First2, MidN+RN, RR};

({LL, LN, LR}, R) ->
{LR, MidN, Last2} = nPythag3(LR++R),
{LL, LN+MidN, Last2};

(L,R) -> nPythag3(L++R)
end,
fun % Root

({ , N, }) -> N;
(L) -> 0

end
).

2. Filter Locks (16 points) I’ve mentioned several times that Peterson’s mutual exclusion algorithm can be ex-
tended to apply to any number of clients. The algorithm is called a “filter lock”. Here’s the code:

00: int level[N], victim[N]; // initially all 0

01: lock(i) {
02: for(int j = 1; j < N; j++) {
03: level[i] = j;
04: victim[j] = i;



05: while((victim[j] == i) && ∃ 0 ≤ k < N. (k 6= i) && level[k] ≥ j);
06: }
07: }

08: unlock(i) {
09: level[i] = 0;
10: }

The key idea in the lock is that each thread must pass through N−1 “levels” of locking (the for(j...) loop)
before entering its critical section. To advance from level j to level j+1, there must be no other threads at level
j or higher, or there must be some other thread that is the “victim” at level j. A consequence is that if there is
another thread at this level or higher, then there must be at least one thread “left behind” at each of the lower
levels. In particular, if thread x is in the critical section, and thread y is at level N − 1, there are threads at every
level from 1 to N − 1; thread y is the victim at level N − 1; and thread y can’t advance to the critical section.

(a) (8 points) Show that the filter lock is not starvation free. For example, consider a filter lock with three
clients: 0, 1, and 2. Show that one of the clients can spin forever while the other two alternately acquire
and release the lock.

Solution: What was I thinking!!! Filter locks are starvation free, and a bug bounty was claimed
about five minutes before the end of the exam. I will do some combination of removing the points
for this problem from the “out of” and/or giving extra credit marks for partial solutions. I’ll post a
description of how I handled this when the exam grading is done.
Proof that filter locks are starvation free. If a thread is stuck spinning at line 05, then this thread must
be the victim, and there must be another thread at or above this level. If there is another thread at
this level, then that thread can advance because it is not the victim. This shows that the filter lock is
deadlock free. Once the threads that are ahead of this one make it to the critical section and back to
idle, this one must will be able to advance.
The concern is that some other threads may come reach this level in the meantime – for example,
threads that were above this one could reach their critical section, come back around and then pass
this one again. The key observation (and this is where I blew it) is that if thread i1 is at level j, and
thread i2 enters level k then thread i2 sets the victim[j] variable to i2. It will not get set back to
i2 (until after i1 has reached its critical section and is trying again for the lock), because only thread
i1 can set a victim variable to i1. Thus, once some other thread enters level j, thread i1 can progress
at least to level j + 1. Eventually, thread i1 gets the lock.
What was I thinking? It’s an embarrassing brain slip. I’m very sorry, and I’ll adjust the grading to be
in your favor.

(b) (8 points) Show that if the statements at lines 03 and 04 are exchanged (i.e. victim[j] = i; is
performed before level[i] = j;, then mutual exclusion can be violated.

Solution: The following execution shows a violation:
0. All threads are at level 0.
1. Thread 1 sets victim[1] = 1;

2. Thread 2 sets victim[1] = 2;

3. Thread 2 sets level[2] = 1;

4. Thread 2 checks the condition at line 05. It is the victim, but there is no other thread with level
at or above 1.

5. Thread 2 enters it’s critical section.
6. Thread 1 sets level[1] = 1;

7. Thread 1 checks the condition at line 05. It is the not victim.
8. Thread 1 enters it’s critical section.



3. Sorting (25 points)
The question finishes showing that the compare-and-swap elements of sorting networks can be replaced by
“merge-and-split” operations. Homework 4, question 2, also looked at this. This can be used to obtain practical
parallel sorting algorithms for common parallel architectures.

Let M be a positive integer. We will consider merge-and-split operations on lists of length M . In particular,

merge and split({In0, In1}) -> {Out0, Out1}
where:

In0 and In1 are lists of M elements in ascending order.
Out0 is the first M elements of merge(In0, In1), sorted into ascending order.
Out1 is the last M elements of merge(In0, In1), sorted into ascending order.

For example:

merge and split({[1, 4, 9, 16, 25, 36], [3, 5, 7, 9, 11, 13]}) ->
{[1, 3, 4, 5, 7, 9], [9, 11, 13, 16, 25, 36]}.

(a) (5 points) What is the result of

merge and split({[0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 1, 1]})

?

Solution: {[0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1]}.
(b) (5 points) Show that if In0 and In1 are lists of 0s and 1s in ascending order, and

{Out0, Out1} = merge and split({In0, In1})
then at least one of Out0 or Out1 must be clean (i.e. all 0s or all 1s).

Solution: There are a total of 2M elements in In0 and In1. If at least M of these are 0s, then Out0 is
all 0s and therefore clean. Otherwise, at least M + 1 of the input elements are 1s, and Out1 is all 1s
and therefore clean.

(c) (10 points) Let S be a sorting network with N inputs and N outputs. Let S′ be the network obtained by
replacing every compare-and-swap in S with a merge-and-split operation. Now, let A0, A1, . . . , AN−1 be
any N sorted lists of 0s and 1s of length M . Apply these lists as the inputs to S′, and let X0, X1, . . . ,
XN−1 be the resulting outputs.
Show that there is an input to S′, B0, B1, . . . , BN−1 such that B is a permutation of X and when B is
applied as the input to S′, X is the output.

Solution: The main idea is that we can derive B by working backwards through the sorting network
from X . We use the forward computation that started with A to see where the clean lists are in the
network. If A produces a clean list at the output of some merge-and-split operation, we’ll keep that
list in our backwards pass for deriving B. We note that if A produces a dirty list at the output of
some merge-and-split operation, we can change the number of 1s or 0s in that list, and still be able to
find a valid input to that merge-and-split that produces the outputs that we are using in our backwards
sweep. This lets us keep the lists as a permutation of the lists from X , and we never have to break a
clean lists from X into the dirty lists of A that went into it. Quite a bit of partial credit will be given
for making observations like those above.
The rest of my solution gives the details for the proof. I give lots more details than I require in a full-
credit solution. I’m trying to write a solution that will be clear to someone who has already thought
about the problem but may not have solved it.
We can describe a sorting network as a list of tuples. The list [{I,J} | Tl] describes a network
that first does a merge-and-split of lists I and J, and applies the resulting lists to the sorting network
described by Tl. In particular, Let



derive b(A, []) -> A;
derive b(A, S1 = [{I, J} | Tl]) ->
{AI, AJ} = {nth(I, A), nth(J, A)},
{RI, RJ} = merge and split({AI, AJ}),
R = replace(I, RI, replace(J, RJ, A)),
Y = derive b(R, Tl),
{YI, YJ} = {nth(I, Y), nth(J, Y)}
{BI, BJ} = if

clean(AI) and (YJ == AI) -> YJ, YI;
clean(AJ) and (YI == AJ) -> YJ, YI;
true -> YI, YJ

end,
B = replace(I, BI, replace(J, BJ, Y)).

Where nth(I, List) is the Ith element of List; replace(I, X, List) is the list obtained
by replacing the Ith element of List with E; and clean(List) is true if every element of List is
0 or every element of List is 1. If S is a sorting network (using merge-and-split operations) and LL
is a list of lists, then I’ll write S(LL) to denote the list of lists obtained by applying sorting network
S with input LL.
To understand the code, note that {I,J} are the indices of the lists for the next merge-and-split. Thus
AI and AJ are the inputs to that merge-and-split, and RI and RJ are the outputs. The goal now is
to derive B so that S1(A) = S1(B) and the lists of B are a permutation of the lists of S1(A).
The code does this recursively. It constructs Y so that Tl(Y) = S1(A) and the lists of Y are a
permutation of the lists of S1(A). Then, it derives B from A and Y.
Let B = derive b(A, S’). I’ll show that B has the properties described above. My proof is by
induction on S1, and my induction hypothesis is
S1(B) == S1(A),

and The lists of B are the same (but possibly permuted) as the lists of S1(A),
and If the Ith list of A is clean, then the Ith list of B is the same as the Ith list of A.

The base case is when S1 = [], then B = A = X, and the claims are immediate. Otherwise, let
S1 = [{I,J} | Tl]. From the induction hypothesis, we have that Tl(R) = S1(A). There are
two cases to consider:
clean(AI) and clean(AJ): then RI and RJ are both clean. From the induction hypothesis,
YI=RI and YJ=RJ are both clean. From the declarations for BI and BJ, BI=AI and BJ=AJ,
therefore B=A and S1(B) = S1(A), and all clean lists of A are equal to their counterparts in
B. From the declarations for BI and BJ, B is a permutation of Y. From the induction hypothesis,
Y is a permutation of S1(A). Therefore, B is a permutation of S1(S).

Otherwise: On of AI or AJ (or both) are dirty. From question 3b, one of RI or RJ is clean. If AI
is clean and all 0s, then RI will be clean and all 0s (def. merge and split); YI will be clean
and all 0s (induction hypothesis); and BI will be clean and all 0s (declaration of BI). Similar
arguments apply in the other three cases where AI or AJ are clean. If AI and AJ are both dirty,
then one of RI or RJ will be clean (question 3b); and the corresponding YI or YJ will be clean.
The other one may be either clean or dirty. In this case BI=YI and BJ=YJ. By construction,

{YI, YJ} = merge and split({BI, BJ})
Therefore, S1(B) = T1(Y) = S1(A). Furthermore, the lists of B are a permutation of the
lists of S1(A) by the same argument as used in the previous case.

This completes the induction proof. Therefore, B = derive b(A, S’) satisfies the induction
hypothesis, which means that it is a permutation of X = S’(A) and S’(B) = X as required.

(d) (5 points) The induction argument from question 3c shows that if the lists B1, . . . , BN−1 are applied as
the inputs to S′, then for each merge and split operation in S′, either {Out0, Out1} = {In0,



In1}, or {Out0, Out1} = {In1, In0}. For 0 ≤ i < N , let Ci be the number of 1s in list Bi.
Show that if S′ sorts the B lists incorrectly, S must sort C incorrectly as well.

Solution: If B is applied as an input to S’ then each merge-and-split operation has at least one clean input
– otherwise, the number of 1s in the lists wouldn’t be preserved by the merge-and-split operations. If
one input to a merge-and-split is clean, then it must have a clean output, and the other output must
match the other input. In other words, the merge and split either copies {In0, In1} to {Out0,
Out1} or it swaps them. In the problem statement, I told you you could assume this; so, a solution
can get full credit without the argument of this paragraph.
The lists consist of 0s and 1s and are sorted into ascending order; so, there are only M + 1 possible
lists, depending on how many 1s are in the list. Thus, each input to a merge-and-split can be described
using integers in 0, . . . ,M , and the outputs of the merge-and-split are the same of the inputs if In0
has fewer 1s than In1 and swapped if In0 has more 1s than In1. Thus, a compare-and-swap of the
integers is equivalent to merge-and-split of the lists. This can be applied to the entire sorting network.
Therefore, if the merge-and-split sorting network produces an unsorted result with the B list-of-lists,
then the compare-and-swap network will produce an unsorted result with the C list-of-integers.

Hint: you can do this even if you didn’t solve question 3c. In particular, you are allowed to assume what I
said about the merge and split operations.

4. Matrix Multiplication (20 points)
Let’s say you get a job writing code at a local company that needs to do some moderately intense number
crunching. A typical problem is computing products of N ×N matrices, where N ranges from 1000 to 20000.

(a) (4 points) Let’s say you’ve got a laptop with a 2.5GHz, quad-core processor. From mini-assignment 4, we
know that multiplying a N1 × N2 by a N2 × N3 matrix on a machine with a clock frequency of f takes
time of roughly 3N1N2N3/f . What is the time to compute a matrix products for N = 1000, N = 5000,
and N = 20000?

Solution: The time is 3N3/f . For f = 2.5GHz, this is (1.2 seconds)(N/1000)3.
N = 1000: Tseq = 1.2 seconds.
N = 5000: Tseq = 1.2 ∗ (53) seconds = 1.2 ∗ 125 seconds = 150 seconds.
N = 20000: Tseq = 1.2 ∗ (203) seconds = 1.2 ∗ 8000 seconds = 9600 seconds.

(b) (4 points) You try to convince your manager to buy a cluster of linux machines for your computation.
Your proposal is for 32, 8-core processors running at 2.5GHz. The total number of processors is 256. For
simplicity, we’ll pretend that there isn’t any multi-threading. Assume that the time to transfer a block m
double-precision values between processors (over the network, it’s a cluster) is:

Tnetwork = 0.1ms +m ∗ 50ns

where 1ms = 10−3seconds, and 1ns = 10−9seconds.
Using the algorithm we derived in class (Sept. 24), each processor performs P matrix products where it
multiplies a (N/P ) × (N/P ) matrix by a (N/P ) × N matrix. Furthermore, each processor sends (and
receives) P − 1 messages of size N2/P double precision numbers. For simplicity, assume that the time
for sending messages cannot be overlapped with computation time. What is the speed-up when computing
matrix products for N = 1000, N = 5000, and N = 20000?

Solution: Each processor computes P multiplications of a (N/P ) × (N/P ) matrix by a (N/P ) × N
matrix. Each matrix multiplication takes 3N3/(P 2f) time. The total compute time for each processor
is P 3N3

P 2f = 3N3/(Pf) which is just Tseq/P . The communication time is (P − 1) ∗ (0.1ms +

50(N2/P ) ns). That gives us the following table:

N Tseq Tpar ,1 Tpar ,2 Tpar ,3 Tpar speed up
1000 1.2s 4.6875ms 1.5ms 49.8ms 55.9875ms 21.4
5000 150s 586ms 1.5ms 1.245s 1.8326s 81.9
20000 9600s 37.5s 1.5ms 19.92s 57.42s 167.2



where Tpar ,1 = 3N3/(Pf) is the compute time for the parallel version; Tpar ,2 = (P − 1) ∗ 0.1ms is
the part of the communication time that is independent of matrix size; and

Tpar ,3 = (P − 1)50N2

P ns = 50P−1
P

(
N

1000

)2
ms

is the part of the communication time that depends on the matrix size. Of course, to save time, you
didn’t need to copy numbers from your solution to question 4a. I put them all into the table to make it
easier to read.
Note: for all parts of this problem, I did most of the calculations in my head, and used a calculator for
the multi-digit divisions. My answers may be slightly off by one or two in the least significant digits.
That’s indicative of the error-tolerance that I’ll include in grading.

(c) (4 points) Your manager isn’t convinced, but you really want to her to buy that linux cluster. You read up
on algorithms for matrix multiplication and find an algorithm where each processor performs

√
P matrix

products where it multiplies a (N/
√
P )× (N/

√
P ) matrix by another (N/

√
P )× (N/

√
P ). Furthermore,

each processors sends (and receive)
√
P messages of size N2/P double precision numbers. With the

new algorithm, what is the speed-up when computing matrix products for N = 1000, N = 5000, and
N = 20000?

Solution: The computation time stays the same. There are now
√
P messages sent per processor instead

of P − 1. I’ll just scale the communication times (Tpar ,2 + Tpar ,3) from the previous problem by√
P/(P − 1) = 0.62745. The new table is:

N Tseq Tpar ,1 Tpar ,2+3 Tpar speed up
1000 1.2s 4.6875ms 3.22ms 7.91ms 151.7
5000 150s 586ms 78.2ms 664.2ms 225.8
20000 9600s 37.5s 1.25s 38.75s 247.7

Reducing the number of messages makes a big difference!

(d) (8 points) A coworker installs an optimized BLAS (numerical library) which is faster than the simple code
I showed in class. You find that the time to multiply a N1 ×N2 matrix by a N2 ×N3 matrix on a machine
with a clock frequency of f now takes time of roughly 1.2N1N2N3/f . What is the sequential time (as in
question 4a and parallel time (as in question 4c when the BLAS library is used?

i. What is the sequential time (as in question 4a and parallel time (as in question 4c when the BLAS
library is used?

Solution: The sequential times get divided by 3/1.2 = 2.5. For the parallel version, the compute
time is divided by 2.5, but the communication time stays the same.

N Tseq Tpar ,1 Tpar ,2+3 Tpar speed up
1000 0.48s 1.875ms 3.22ms 4.1ms 117.5
5000 60s 234.4ms 78.2ms 312.6ms 191.9
20000 3840s 15s 1.25s 16.25s 236.3

ii. Write one sentence to summarize the impact of the faster sequential algorithm on the execution time.
Solution: Execution times dropped for both the sequential and parallel versions.

iii. Write one sentence to summarize the impact of the faster sequential algorithm on the speed-up.
Solution: Speed-ups decreased as well.

iv. Write one sentence to explain the relationship you observe between execution time and speed-up?
Solution: A faster sequential implementation results in lower speed-ups because the overheads

(communication) become a larger percentage of the total execution time for the parallel program.

5. Other Stuff (16 points)
Answer each question below with 1-3 sentences. Points may be taken off for long answers.



(a) (4 points) What is instruction level parallelism?

Solution: Executing multiple instructions in parallel by identifying their dependencies and executing
instructions when their dependencies are resolved. Super-scalar architectures are one way to exploit
instruction level parallelism.

(b) (4 points) What is “single-instruction, multiple-thread” parallelism?

Solution: Fetching and decoding a single instruction stream and sending it to multiple execution pipelines.
Each pipeline can resolve branch conditions independently. Instead of taking or not taking a branch,
instructions are executed conditionally based on the branch outcome. This is called “predicated ex-
ecution.” GPUs are an example of an architecture that provides single-instruction multiple-thread
parallelism.

(c) (4 points) How does map-reduce handle machine and network failures?

Solution: The map and reduce processes can be (re-)executed on a different machine if the original
machine fails to respond (e.g. to a ping). The entire job can be re-executed with a different master
process if the master fails to respond.

(d) (4 points) What is a memory fence?

Solution: An operation that forces pending memory operations to complete, thus ensuring that all cache
coherence operations have finished as well.

Note, my answer for single-instruction, multiple-thread was five sentences. A three sentence answer is fine as
long as it clearly gets two or three key points. The same applies for the other problems as well.


