Advances in Automated Theorem Proving

Leonardo de Moura, Nikolaj Bjørner Ken McMillan, Margus Veanes

presented by
Thomas Ball

http://research.microsoft.com/rise/ http://rise4fun.com/z3py/

Symbolic Reasoning

Logic is "The Calculus of Computer Science" Zohar Manna

> Practical problems often have structure that can be exploited.

Undecidable (FOL + LIA)

Semi Decidable (FOL)
NEXPTIME (EPR)
PSPACE (QBF)
NP (SAT)

Satisfiability

Solution/Model

Automated Theorem

Congruence Closure

Groebner Basis

Learn about Z3 and get the source code!

Start here

http://rise4fun.com/Z3Py/tutorial/guide
Strategies
http://rise4fun.com/Z3Py/tutorial/strategies
Advanced topics
http://rise4fun.com/Z3Py/tutorial/advanced
Source code
http://z3.codeplex.com/

Some Applications

Functional verification
Defect detection
Test generation
Design-space exploration
New programming languages

Impact

Z3 used by many research groups (> 700 citations) More than 17k downloads Z3 placed 1st in 17/21 categories in 2011 SMT competition

Design \& PL Verification/Defect Detection Testing

FORMULA

Modeling Foundations.

SAGE

Recent Progress

Craig Interpolation and Interpolating Z3

Ken McMillan

(FMCAD 2011)

Introduction

Imagine two companies that want to do business...

Constraints \longrightarrow UNSAT \longleftarrow Constraints

Interpolants as Explanations

Interpolants as Floyd-Hoare proofs

Interpolants as Floyd-Hoare proofs

Interpolants as Floyd-Hoare proofs

Interpolants as Floyd-Hoare proofs

Interpolants as Floyd-Hoare proofs

Duality: Summaries from Interpolants

Duality performance vs. Yogi

Symbolic Automata and Transducers

Margus Veanes, Nikolaj Bjørner (POPL 2011)

Core Question

Can classical automata theory and algorithms be extended to work modulo large (infinite) alphabets I ?

Symbolic Automata:

Relativizedhbormbal an ininaco

Tramspucers transformation
Classical Word Transducers modulo Th() (e.g. decoding Elatssictal/O rationaAtutomertatations) (e.g. Mealy

Symbolic Word Acceptors
Classical Word Acceptors modulo Th()
regex matching

Symbolic Finite Transducer (SFT)

Classical transducer modulo a rich label theory
Core Idea: represent labels with guarded transformers
Separation of concerns: finite graph / theory of labelsConcrete

Algorithms

New algorithms for SFAs and SFTs

Extensions of classical algorithms modulo Th()

Big-O complexity matches that of classical algorithms, with factor for decision procedure

Analysis

, Example 1: $x(\mathrm{utf} 8 \mathrm{encode}(x)$ Rutf8)?

1. $E=S F T$ (utf8encode)
2. $\quad A=\operatorname{Complement}(S F A($ Rutf 8$))$
3. $\quad B=+x \cdot A(E(x))$
4. B 的

. Example 2: $+x$.utf8decode(utf8encode $(x))$ col $I d$?

Links

Symbolic Automata Tool Kit http://research.microsoft.com/automata/

Rex (acceptors) online http://rise4fun.com/rex/

Bek (transducers) online
Samples: http://rise4fun.com/Bek/ Tutorials: http://rise4fun.com/Bek/tutorial

Solving Nonlinear Arithmetic

Dejan Jovanović (NYU) and Leonardo de Moura
(IJCAR 2012)

Polynomial Constraints

AKA
 Existential Theory of the Reals

$$
\infty \quad D
$$

Milestones

RCF admits QE
non elementary complexity
$8201247 \quad 1637 \quad 173218301835187619301975$

QE by CAD
Doubly exponential

Applications

How hard is R ?

CAD "Big Picture"

1. Saturate

2 2. Search

Our Procedure

Start search before saturate/project

Saturate on demand

Apply SAT solver heuristics
Learn lemmas from conflicts
Non-chronological backtracking

Our Procedure (1)

Key ideas: Use partial solution to guide the search

Feasible Region

What is the core?

Fig. 1. Solutions of $f_{2}=x^{2}+y^{2}-1=0$ and $f_{\{ }=-4 x y-4 x+y-1=0$ in blue, solutions of $f_{4}=x^{3}+2 x^{2}+3 y^{2}-5=0$ in orange. Solution set of $\left\{f_{2}<0, f_{3}>0, f_{4}<0\right.$ in green. The dashed lines represent the zeroes of the projection set 2.

Our Procedure (2)

Key ideas: Nonchronological Backtracking

Our Procedure (3)

Key ideas: Lemma Learning
Prevent a Conflict from happening again.

Current assignments does not satisfy new constraint.

Complexity Trap: P

 Effliwienanumbers are efficient "CAD is polynomial for a fixed number of variables"
Every detail matters

GCD of two polynomials
Our procedure "dies" in polynomial time steps
Real algebraic number computations
Computing PSCs
Root isolation of polynomials with irrational coefficients

Experimental Results

NEW ENGINE

solver	meti-tarski (1006)		keymaera (421)		zankl (166)		hong (20)		kissing (45)		all (1658)	
	solved	time (s)	solved	time (s)	solved	time (s)	solved	me (s)	solved	time (s)	solved	time (s)
nlsat	1002	343	420	5	89	234	10	170	13	95	1534	849
Mathematica	1006	796	420	171	50	366	9	208	6	29	1491	1572
QEPCAD	991	2616	368	1331	21	38	6	43	4	5	1390	4036
Redlog-VTS	847	28640	419	78	42	490	6	3	10	275	1324	29488
Redlog-CAD	848	21706	363	730	21	173	6	2	4	0	1242	22613
z3	266	83	379	1216	21	0	1	0	0	0	667	1299
iSAT	203	122	291	16	21	24	20	822	0	0	535	986
cvc3	150	13	361	5	12	3	0	0	0	0	523	22
MiniSmt	40	697	35	0	46	1370	0	0	18	44	139	2112

Conclusions

"Logic is the Calculus of Computer Science"
Automating mathematical logic
Logic engines as a service

