Advances in Automated Theorem Proving

Leonardo de Moura, Nikolaj Bjørner Ken McMillan, Margus Veanes

> presented by Thomas Ball

http://research.microsoft.com/rise/ http://rise4fun.com/z3py/

Symbolic Reasoning

Logic is "The Calculus of Computer Science" Zohar Manna

Practical problems often have structure that can be exploited.

Undecidable (FOL + LIA)

Semi Decidable (FOL)

NEXPTIME (EPR)

PSPACE (QBF)

NP (SAT)

Satisfiability

Automated Theorem Provier

http://research.microsoft.com/projects/z3/ Leonardo de Moura and Nikolaj Bjørner

Learn about Z3 and get the source code!

Start here

http://rise4fun.com/Z3Py/tutorial/guide

Strategies

http://rise4fun.com/Z3Py/tutorial/strategies

Advanced topics

http://rise4fun.com/Z3Py/tutorial/advanced

Source code

http://z3.codeplex.com/

Some Applications

- **Functional verification**
- **Defect detection**
- Test generation
- **Design-space** exploration
- New programming languages

Impact

Z3 used by many research groups (> 700 citations) More than 17k downloads Z3 placed 1st in 17/21 categories in 2011 SMT competition

Design & PL Verification/Defect Detection Testing Pex FOR Modeling Foundations. SAGE

Recent Progress

Craig Interpolation and Interpolating Z3

Ken McMillan

(FMCAD 2011)

Introduction

Imagine two companies that want to do business...

Interpolants as Explanations

$$x 1 = y 0$$

$$y 1 = y 0 + 1$$

$$x 1 = y 1$$

$$x 1 = y 0$$

$$y 1 = y 0 + 1$$

$$x 1 = y 1$$

$$x 1 = y 0$$

$$y 1 = y 0 + 1$$

$$x 1 = y 1$$

Duality: Summaries from Interpolants

Duality performance vs. Yogi

Symbolic Automata and Transducers

Margus Veanes, Nikolaj Bjørner (POPL 2011)

Core Question

Can classical automata theory and algorithms be extended to work *modulo* large (infinite) alphabets T?

Symbolic Finite Transducer (SFT)

Classical transducer modulo a rich label theory

Core Idea: represent labels with guarded transformers

Algorithms

New algorithms for SFAs and SFTs

Extensions of classical algorithms *modulo* Th()

Big-O complexity matches that of classical algorithms, with factor for decision procedure

Analysis

- Example 1: •• x(utf8encode(x) & Rutf8) ?
 - E = SFT(utf8encode)
 - $_{2.}$ A = Complement(SFA(Rutf8))
 - $B = \bigstar x. A(E(x))$
 - 4. *B* **G V** ?

Example 2: $\Rightarrow x.utf8decode(utf8encode(x))$ Id ?

Links

Symbolic Automata Tool Kit http://research.microsoft.com/automata/

Rex (acceptors) online http://rise4fun.com/rex/

Bek (transducers) online Samples: http://rise4fun.com/Bek/ Tutorials: http://rise4fun.com/Bek/tutorial

Solving Nonlinear Arithmetic

Dejan Jovanović (NYU) and Leonardo de Moura

(IJCAR 2012)

Polynomial Constraints

AKA Existential Theory of the Reals •• R

Milestones

Doubly exponential

Applications

Y

÷

How hard is •• R?

PSPACE membership Canny – 1988, Grigor'ev – 1988

NP-hardness x is "Boolean" x(x-1) = 0x or y or z (x + y + z)

CAD "Big Picture"

Our Procedure

Start search before saturate/project

Saturate on demand

Apply SAT solver heuristics Learn lemmas from conflicts Non-chronological backtracking

Our Procedure (1)

Key ideas: Use partial solution to guide the search

Fig. 1. Solutions of $f_2 = x^2 + y^2 - 1 = 0$ and $f_3 = -4xy - 4x + y - 1 = 0$ in blue, solutions of $f_4 = x^3 + 2x^2 + 3y^2 - 5 = 0$ in orange. Solution set of $\{f_2 < 0, f_3 > 0, f_4 < 0$ in green. The dashed lines represent the zeroes of the projection set (2).

Our Procedure (2)

Key ideas: Nonchronological Backtracking

Our Procedure (3)

Key ideas: Lemma Learning

Prevent a **Conflict** from happening again.

Complexity Trap: P Realizer numbers are efficient" "CAD is polynomial for a fixed number of variables"

Every detail matters

- GCD of two polynomials
- Our procedure "dies" in polynomial time steps
 - Real algebraic number computations
 - Computing PSCs
 - Root isolation of polynomials with irrational coefficients

Experimental Results

NEW ENGINE

	meti-tarski (1006)		keymaera (421)		zankl	ankl (166)		hong (20)		kissing (45)		all (1658)	
solver	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	
nlsat	1002	343	420	5	89	234	10	170	13	95	1534	849	
Mathematica	1006	796	420	171	50	366	9	208	6	29	1491	1572	
QEPCAD	991	2616	368	1331	21	38	6	43	4	5	1390	4036	
Redlog-VTS	847	28640	419	78	42	490	6	3	10	275	1324	29488	
Redlog-CAD	848	21706	363	730	21	173	6	2	4	0	1242	22613	
z3	266	83	379	1216	21	0	1	0	0	0	667	1299	
iSAT	203	122	291	16	21	24	20	822	0	0	535	986	
cvc3	150	13	361	5	12	3	0	0	0	0	523	22	
MiniSmt	40	697	35	0	46	1370	0	0	18	44	139	2112	

Conclusions

"Logic is the Calculus of Computer Science" Automating mathematical logic

Logic engines as a service

