
Model Checking and Course Review

Mark Greenstreet

CpSc 418 – Nov. 27, 2012

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 1 / 16

Lecture Outline

Model Checking & Course Review
Model Checking (finishing up)

I Parallel Model Checking: Stern & Dill
I Termination Detection
I Scaling it up: PReach

Course Summary

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 2 / 16

Stern and Dill’s algorithm (w/o termination detection)

reach(Q, Nprocs) ->
Pids = map(fun(I) -> spawn(doCheck, []) end,

seq(0, Nprocs-1)),
map(fun(Pid) -> Pid ! {allPids, Pids} end, Pids),
sendStates(Pids, Q).

sendStates(Pids, [Hd | Tl]) ->
nth(hashToPid(Hd), Pids) ! {state, Hd},
sendStates(Pids, Tl).

doCheck() -> receive {allPids, Pids} -> doCheck(Pids, ∅) end.
doCheck(Pids, Q) ->

receive {state, State} ->
if

State ∈ Q -> doCheck(Pids, Q);
true ->

sendState(Pids, successors(State)),
doCheck(Pids, Q ∪ {State})

end
end.

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 3 / 16

Termination Detection

How do we know when we’re done?
Simple idea:

I If root process is idle for a while
F It sends messages to all other processes asking if they are idle.
F If they all reply idle, then we conclude that we’re done.

What’s wrong with this “solution”?

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 4 / 16

Stern & Dill’s Approach (part 1)
Make doCheck keep track of how many messages sent and received:

doCheck() ->
receive {allPids, Pids} -> doCheck(Pids, ∅, 0, 0, noDelay)

end.
doCheck(Pids, Q, Nsent, Nrecv, ToSend) ->

TimeOut = if (hd(Pids) == self()) -> 1000;
true -> infinity end,

receive
{state, State} ->

if
State ∈ Q ->

doCheck(Pids, Q, Nsent, Nrecv+1, ToSend);
true ->

doCheck(Pids, Q ∪ {State},
Nsent+length(Q), Nrecv+1,
sendStates(Pids, successors(State), ToSend))

end;

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 5 / 16

Stern & Dill’s Approach (part 2)

...
receive

...
doneQuery ->

hd(Pids) ! {msgcnt, (Nsent - Nrecv)},
doCheck(Pids, Q, Nsent, Nrecv, []);

continue ->
sendStates(Pids, ToSend, noDelay),
doCheck(Pids, Q, Nsent + length(ToSend), Nrecv, noDelay);

die -> ok
after TimeOut ->

[Pid ! doneQuery || Pid <- tl(Pids)], % send all Pids a done query
% check message counts
M = lists:sum([receive msgcnt, C -> C || <- Pids]), if

M == 0 -> map(fun(Pid) -> Pid ! die end; Pids);
M /= 0 -> map(fun(Pid) -> Pid ! continue end; Pids)

end
end.

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 6 / 16

Stern & Dill’s Approach (part 3)

sendStates(State, Pids, ToSend) ->
if

ToSend == noDelay ->
nth(hashToPid(State), Pids) ! {state, State},
noDelay;

true -> [State, ToSend]
end.

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 7 / 16

Why Stern & Dill’s approach is correct

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 8 / 16

PReach: scaling it up to hundreds of processors

Issues
I Input queue overflow
I Load balancing
I Message batching

Results
I Used at Intel on clusters with several hundred machines.
I Current work on

F Adding checks for liveness properties.
F Performance: we always want bigger and faster.
F Robustness: how to keep going if a machine crashes.

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 9 / 16

Course Summary

Architectures
Algorithms
Performance
Correctness
Programming languages and APIs

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 10 / 16

Course Summary: Architectures (part 1)
Pipelined machines and superscalar architectures

I The hardware finds the parallelism.
I Little or no effort needed by the programmer.
I This “free” parallelism is limited, but useful.
I And not really free: superscalars are complicated and power

hungry.

Shared memory machines
I Caches and coherence protocols: MESI
I Sequential consistency:

F Memory acts as if all reads and writes done in some sequential order.
F This order is consistent with program order on individual processors.

I Weak consistency
F Real machines make weaker guarantees than sequential consistency.
F Allows reads to bypass writes.
F Best to use synchronization methods from APIs such as pthreads or

Java threads
• Alternative is to thoroughly understand the messy
details of real cache protocols.

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 11 / 16

Course Summary: Architectures (part 2)

Message Passing Machines
I Communication is explicit in the programs.
I Much focus on network topologies:

F Ring, star, crossbar, hypercube, meshes and tori
F Why are 3D tori common starting point for large machines?
F How are 3D tori extended to 5D or 6D? What are the benefits?

GPGPUs
I SIMD (single-instruction, multiple-data) parallelism
I Deep pipelines: how does this impact the software?
I How are conditionals handled in SIMD?

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 12 / 16

Course Summary: Algorithms

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 13 / 16

Course Summary: Performance

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 14 / 16

Course Summary: Correctness

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 15 / 16

Course Summary: Languages and APIs

Mark Greenstreet Model Checking and Course Review CpSc 418 – Nov. 27, 2012 16 / 16

