Model Checking

Mark Greenstreet

CpSc 418 — Nov. 27, 2012

Mark Greenstreet Model Checking

Lecture Outline

Model Checking & Termination Detection

@ Erlang Workshop
@ Model Checking

» Dining Philosophers (again)

» Model Checking

» Parallel Model Checking (Stern & Dill)
@ Termination Detection

» Brainstorm
» Stern & Dill's method
» Termination detection without timers

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 2/18

Erlang Workshop

@ Worker pools.
@ Worker process state
» workers:put and workers:get: called by the worker process,
accesses that process’s state.
» workers:update and workers:retrieve: called by the master
process, accesses the state of all processes.
@ Distributed lists:

» Creating with workers:update.
» Creating with workers:seaq.
» Creating with workers:rlist.

@ Reduce and scan
@ Debugging tips

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 3/18

Dining Philosophers

A classic illustration of deadlock and livelock for parallel programs,
operating systems, and other concurrent programming problems.
@ Setting:
» Five philosophers sit at a round dinner table.
» Each philosopher has a plate of spaghetti in front of him/her.
» There is one fork between each pair of philosophers.
@ Eating:
» To eat, each philosopher must pick up the fork to his/her left and the
fork to his/her right (in either order).
» In other words, the philosopher must acquire two locks.

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 4/18

A Philosopher’s FSM

release left fail to lock right

lock left

release left

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012

5/18

A Fork’'s FSM

grant left grant right
Iefy) Cidley Gighty

left drop right drop

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 6/18

Combining the FSMs

11

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 7/18

Finding all reachable states

@ Find all reachable states:

P :=initialStates; // P = pending states
Q = 0; // Q = processed states
while(P # 0) {
X := any element of P;
P:=P-{x};
if(x ¢ Q) {
Q:=QuU {x};
for each successor, y, of x {
P:=PuU{y}
}
}
}

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 8/18

Model Checking

@ Let ¢ be a property (a predicate over states).
@ To show that ¢ holds in all reachable states:
» Compute the set of reachable states.
» Verify that ¢ holds in each one.
@ To find states from which ¢ eventually holds:

Q := all reachable states;
P:={x € Q| ¢ holds in x};
repeat {
¥ :={y € Q— ¢ | all successors of y are in P};
P:=PuUv;
} until(y = 0);
@ For predicates a and § we can show

» If o holds in some state, 8 will hold in some future state.
» If o holds in some state, « will continue to hold (at least) until a

state is reached where 3 holds.
> ...

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 9/18

Model Checking

@ Model Checking is awesome!
» It can automatically check for errors.
» It is exhaustive: no error left undetected.
» It can generate counter-examples.
@ BUT state-space explosion is a big problem
» Our dining philosopher’s example had:

* 5 philosophers and 5 forks
* 6 states per philosopher, 3 per fork.
* 6° % 3% ~ 1.9million states.
* Even more if we added priority counters, etc., to prevent livelock and
starvation.
» A few million states can be readily explored by a computer.

* But not a few quadrillion or more.

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 10/18

Avoiding the state space explosion

@ Symmetry reductions.

@ Symbolic methods.
@ Lots of other clever tricks:

» Model checking is used in industry to find bugs in code and
hardware where it’s really critical.
» Often used for HW and/or SW that is intrinsically parallel.
» But, still an area where experts are needed:
* |f interested, do your grad work with Alan Hu or me ®.

@ Model checking can work for 10%° or more states!

@ Parallelism:

» 1000 machines have 1000 times as much memory as one.

» At a big company (e.qg. Intel), there are 1000’s of people with
computers, and these computers are idle most of the time.

» Might as well put them to work doing something useful.

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 11/18

Parallel Model Checking

@ Stern and Dill’s algorithm (w/o termination detection):
reach (Q, Nprocs) —>
Pids = map (fun(I) -> spawn (doCheck, []) end, seq(
map (fun (Pid) -> Pid ! {allPids, Pids} end, Pids),
sendStates (Pids, Q).

sendStates (Pids, [Hd | T1]) ->
nth (hashToPid (Hd), Pids) ! {state, Hd},
sendStates (Pids, T1).

doCheck () —-> receive {allPids, Pids} —> doCheck (Pids,

doCheck (Pids, Q) ->
receive {state, State} ->
if
State € Q —> doCheck (Pids, Q);
true —->
sendState (Pids, successors (State)),
doCheck (Pids, Q U {State})

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 12/18

Termination Detection

How do we know when we’re done?
@ Simple idea:
» If root process is idle for a while

* It sends messages to all other processes asking if they are idle.
* |f they all reply id1le, then we conclude that we're done.

@ What's wrong with this “solution”?

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 13/18

Stern & Dill’s Approach

Make doCheck keep track of how many messages sent and received:
doCheck () —> receive {allPids, Pids} -> doCheck (Pids, 0,

doCheck (Pids, Q, Nsent, Nrecv, ToSend) ->

TimeOut = 1if (hd(Pids) == self()) —-> 1000; true —-> in
receive
{state, State} —>
if
State € Q —-> doCheck (Pids, Q, Nsent, Nrecv+l
true —->

doCheck (Pids, Q U {State}, Nsent+length (Q
sendStates (Pids, successors (State), Tc

end;

doneQuery —>
hd (Pids) ! (Nsent - Nrecv),
doCheck (Pids, Q, Nsent, Nrecv, []);

continue —->
sendStates (Pids, ToSend, noDelay),
doCheck (Pids, Q, Nsent + length(ToSend), Nrecv,

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 14/18

Stern & Dill’'s Approach (cont.)
@ The rest of the code

doCheck (Pids, Q, Nsent, Nrecv, ToSend) —->
TimeOut = i1if (hd(Pids) == self()) -> 1000; true -
receive
after TimeOut ->
[Pid ! doneQuery || Pid <- tl(Pids)], % sen
% check message counts
M = lists:sum([receive MessageCount, C —->
= 0 —> map (fun(Pid) -> Pid ! die end

M
M /= 0 -> map (fun(Pid) -> Pid ! continu

~ |

end
end.

sendStates (State, Pids, ToSend) ->

if
ToSend == noDelay —>
nth (hashToPid (State), Pids) ! {state, S
noDelay;
= — = | e @) (=RAKS!
Mark Greenstreet Model Checking

CpSc 418 — Nov. 27, 2012 15/18

Why Stern & Dill's approach is correct

Mark Greenstreet Model Checking

PReach: scaling it up to hundreds of processors

@ Issues
» Input queue overflow
» Load balancing
» Message batching
@ Results

» Used at Intel on clusters with several hundred machines.
» Current work on

* Adding checks for liveness properties.

* Performance: we always want bigger and faster.

* Robustness: how to keep going if a machine crashes.

Mark Greenstreet Model Checking CpSc 418 — Nov. 27, 2012 17/18

Summary

Mark Greenstreet Model Checking

