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Lecture Outline

Model Checking & Termination Detection
Erlang Workshop
Model Checking

I Dining Philosophers (again)
I Model Checking
I Parallel Model Checking (Stern & Dill)

Termination Detection
I Brainstorm
I Stern & Dill’s method
I Termination detection without timers
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Erlang Workshop

Worker pools.
Worker process state

I workers:put and workers:get: called by the worker process,
accesses that process’s state.

I workers:update and workers:retrieve: called by the master
process, accesses the state of all processes.

Distributed lists:
I Creating with workers:update.
I Creating with workers:seq.
I Creating with workers:rlist.

Reduce and scan
Debugging tips
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Dining Philosophers

A classic illustration of deadlock and livelock for parallel programs,
operating systems, and other concurrent programming problems.

Setting:
I Five philosophers sit at a round dinner table.
I Each philosopher has a plate of spaghetti in front of him/her.
I There is one fork between each pair of philosophers.

Eating:
I To eat, each philosopher must pick up the fork to his/her left and the

fork to his/her right (in either order).
I In other words, the philosopher must acquire two locks.
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A Philosopher’s FSM
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A Fork’s FSM
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Combining the FSMs
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Finding all reachable states

Find all reachable states:
P := initialStates; // P = pending states
Q := ∅; // Q = processed states
while(P 6= ∅) {

x := any element of P;
P := P - {x};
if(x 6∈ Q) {

Q := Q ∪ {x};
for each successor, y, of x {

P := P ∪ {y};
}

}
}
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Model Checking

Let φ be a property (a predicate over states).
To show that φ holds in all reachable states:

I Compute the set of reachable states.
I Verify that φ holds in each one.

To find states from which φ eventually holds:
Q := all reachable states;
P := {x ∈ Q | φ holds in x};
repeat {

ψ := {y ∈ Q − φ | all successors of y are in P};
P := P ∪ ψ;

} until(ψ = ∅);
For predicates α and β we can show

I If α holds in some state, β will hold in some future state.
I If α holds in some state, α will continue to hold (at least) until a

state is reached where β holds.
I . . .
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Model Checking

Model Checking is awesome!
I It can automatically check for errors.
I It is exhaustive: no error left undetected.
I It can generate counter-examples.

BUT state-space explosion is a big problem
I Our dining philosopher’s example had:

F 5 philosophers and 5 forks
F 6 states per philosopher, 3 per fork.
F 65 ∗ 35 ≈ 1.9million states.
F Even more if we added priority counters, etc., to prevent livelock and

starvation.
I A few million states can be readily explored by a computer.

F But not a few quadrillion or more.
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Avoiding the state space explosion

Symmetry reductions.
Symbolic methods.
Lots of other clever tricks:

I Model checking is used in industry to find bugs in code and
hardware where it’s really critical.

I Often used for HW and/or SW that is intrinsically parallel.
I But, still an area where experts are needed:

F If interested, do your grad work with Alan Hu or me ,.

Model checking can work for 1030 or more states!
Parallelism:

I 1000 machines have 1000 times as much memory as one.
I At a big company (e.g. Intel), there are 1000’s of people with

computers, and these computers are idle most of the time.
I Might as well put them to work doing something useful.
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Parallel Model Checking
Stern and Dill’s algorithm (w/o termination detection):

reach(Q, Nprocs) ->
Pids = map(fun(I) -> spawn(doCheck, []) end, seq(0, Nprocs-1)),
map(fun(Pid) -> Pid ! {allPids, Pids} end, Pids),
sendStates(Pids, Q).

sendStates(Pids, [Hd | Tl]) ->
nth(hashToPid(Hd), Pids) ! {state, Hd},
sendStates(Pids, Tl).

doCheck() -> receive {allPids, Pids} -> doCheck(Pids, ∅) end.

doCheck(Pids, Q) ->
receive {state, State} ->

if
State ∈ Q -> doCheck(Pids, Q);
true ->

sendState(Pids, successors(State)),
doCheck(Pids, Q ∪ {State})

end
end.
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Termination Detection

How do we know when we’re done?
Simple idea:

I If root process is idle for a while
F It sends messages to all other processes asking if they are idle.
F If they all reply idle, then we conclude that we’re done.

What’s wrong with this “solution”?
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Stern & Dill’s Approach
Make doCheck keep track of how many messages sent and received:

doCheck() -> receive {allPids, Pids} -> doCheck(Pids, ∅, 0, 0, noDelay) end.

doCheck(Pids, Q, Nsent, Nrecv, ToSend) ->
TimeOut = if (hd(Pids) == self()) -> 1000; true -> infinity end,
receive
{state, State} ->

if
State ∈ Q -> doCheck(Pids, Q, Nsent, Nrecv+1, ToSend);
true ->

doCheck(Pids, Q ∪ {State}, Nsent+length(Q), Nrecv+1,
sendStates(Pids, successors(State), ToSend))

end;
doneQuery ->

hd(Pids) ! (Nsent - Nrecv),
doCheck(Pids, Q, Nsent, Nrecv, []);

continue ->
sendStates(Pids, ToSend, noDelay),
doCheck(Pids, Q, Nsent + length(ToSend), Nrecv, noDelay);

die -> ok
after TimeOut -> % see next slide
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Stern & Dill’s Approach (cont.)
The rest of the code

doCheck(Pids, Q, Nsent, Nrecv, ToSend) ->
TimeOut = if (hd(Pids) == self()) -> 1000; true -> infinity end,
receive

...
after TimeOut ->

[Pid ! doneQuery || Pid <- tl(Pids)], % send all Pids a done query
% check message counts
M = lists:sum([ receive MessageCount, C -> C || + <- Pids]), if

M == 0 -> map(fun(Pid) -> Pid ! die end; Pids);
M /= 0 -> map(fun(Pid) -> Pid ! continue end; Pids)

end
end.

sendStates(State, Pids, ToSend) ->
if

ToSend == noDelay ->
nth(hashToPid(State), Pids) ! {state, State},
noDelay;

true -> [State, ToSend]
end.
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Why Stern & Dill’s approach is correct
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PReach: scaling it up to hundreds of processors

Issues
I Input queue overflow
I Load balancing
I Message batching

Results
I Used at Intel on clusters with several hundred machines.
I Current work on

F Adding checks for liveness properties.
F Performance: we always want bigger and faster.
F Robustness: how to keep going if a machine crashes.
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Summary
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