
Model Checking

Mark Greenstreet

CpSc 418 – Nov. 27, 2012

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 1 / 18

Lecture Outline

Model Checking & Termination Detection
Erlang Workshop
Model Checking

I Dining Philosophers (again)
I Model Checking
I Parallel Model Checking (Stern & Dill)

Termination Detection
I Brainstorm
I Stern & Dill’s method
I Termination detection without timers

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 2 / 18

Erlang Workshop

Worker pools.
Worker process state

I workers:put and workers:get: called by the worker process,
accesses that process’s state.

I workers:update and workers:retrieve: called by the master
process, accesses the state of all processes.

Distributed lists:
I Creating with workers:update.
I Creating with workers:seq.
I Creating with workers:rlist.

Reduce and scan
Debugging tips

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 3 / 18

Dining Philosophers

A classic illustration of deadlock and livelock for parallel programs,
operating systems, and other concurrent programming problems.

Setting:
I Five philosophers sit at a round dinner table.
I Each philosopher has a plate of spaghetti in front of him/her.
I There is one fork between each pair of philosophers.

Eating:
I To eat, each philosopher must pick up the fork to his/her left and the

fork to his/her right (in either order).
I In other words, the philosopher must acquire two locks.

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 4 / 18

A Philosopher’s FSM

release left

Think

Hungry GotLeft

Eat

DropRight
DropLeft

Retry

lock left

fail to lock rightrelease left

lock right

release right

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 5 / 18

A Fork’s FSM

right drop

idlelefty righty

grant left grant right

left drop

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 6 / 18

Combining the FSMs

5
5

θ

DX

L

R

A

B

I

θ
D

X

L

R
A

B

I

θ
D

X

L
R

A

B

I

θ

D

X

L

R

A
B

I

θ

D

X

L

R

A

B I

E

H

E
H

E

H

E

H

E

H

11 1112

13

13

14

15

12

15

14

21

23

2224

25

23
2224

21
25 3132

33

34

3533

31

34

32

35

41

44

43

42 4541

42

43

44
4
5

51

54
53

52

55

53

5
2

54
51

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 7 / 18

Finding all reachable states

Find all reachable states:
P := initialStates; // P = pending states
Q := ∅; // Q = processed states
while(P 6= ∅) {

x := any element of P;
P := P - {x};
if(x 6∈ Q) {

Q := Q ∪ {x};
for each successor, y, of x {

P := P ∪ {y};
}

}
}

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 8 / 18

Model Checking

Let φ be a property (a predicate over states).
To show that φ holds in all reachable states:

I Compute the set of reachable states.
I Verify that φ holds in each one.

To find states from which φ eventually holds:
Q := all reachable states;
P := {x ∈ Q | φ holds in x};
repeat {

ψ := {y ∈ Q − φ | all successors of y are in P};
P := P ∪ ψ;

} until(ψ = ∅);
For predicates α and β we can show

I If α holds in some state, β will hold in some future state.
I If α holds in some state, α will continue to hold (at least) until a

state is reached where β holds.
I . . .

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 9 / 18

Model Checking

Model Checking is awesome!
I It can automatically check for errors.
I It is exhaustive: no error left undetected.
I It can generate counter-examples.

BUT state-space explosion is a big problem
I Our dining philosopher’s example had:

F 5 philosophers and 5 forks
F 6 states per philosopher, 3 per fork.
F 65 ∗ 35 ≈ 1.9million states.
F Even more if we added priority counters, etc., to prevent livelock and

starvation.
I A few million states can be readily explored by a computer.

F But not a few quadrillion or more.

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 10 / 18

Avoiding the state space explosion

Symmetry reductions.
Symbolic methods.
Lots of other clever tricks:

I Model checking is used in industry to find bugs in code and
hardware where it’s really critical.

I Often used for HW and/or SW that is intrinsically parallel.
I But, still an area where experts are needed:

F If interested, do your grad work with Alan Hu or me ,.

Model checking can work for 1030 or more states!
Parallelism:

I 1000 machines have 1000 times as much memory as one.
I At a big company (e.g. Intel), there are 1000’s of people with

computers, and these computers are idle most of the time.
I Might as well put them to work doing something useful.

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 11 / 18

Parallel Model Checking
Stern and Dill’s algorithm (w/o termination detection):

reach(Q, Nprocs) ->
Pids = map(fun(I) -> spawn(doCheck, []) end, seq(0, Nprocs-1)),
map(fun(Pid) -> Pid ! {allPids, Pids} end, Pids),
sendStates(Pids, Q).

sendStates(Pids, [Hd | Tl]) ->
nth(hashToPid(Hd), Pids) ! {state, Hd},
sendStates(Pids, Tl).

doCheck() -> receive {allPids, Pids} -> doCheck(Pids, ∅) end.

doCheck(Pids, Q) ->
receive {state, State} ->

if
State ∈ Q -> doCheck(Pids, Q);
true ->

sendState(Pids, successors(State)),
doCheck(Pids, Q ∪ {State})

end
end.

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 12 / 18

Termination Detection

How do we know when we’re done?
Simple idea:

I If root process is idle for a while
F It sends messages to all other processes asking if they are idle.
F If they all reply idle, then we conclude that we’re done.

What’s wrong with this “solution”?

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 13 / 18

Stern & Dill’s Approach
Make doCheck keep track of how many messages sent and received:

doCheck() -> receive {allPids, Pids} -> doCheck(Pids, ∅, 0, 0, noDelay) end.

doCheck(Pids, Q, Nsent, Nrecv, ToSend) ->
TimeOut = if (hd(Pids) == self()) -> 1000; true -> infinity end,
receive
{state, State} ->

if
State ∈ Q -> doCheck(Pids, Q, Nsent, Nrecv+1, ToSend);
true ->

doCheck(Pids, Q ∪ {State}, Nsent+length(Q), Nrecv+1,
sendStates(Pids, successors(State), ToSend))

end;
doneQuery ->

hd(Pids) ! (Nsent - Nrecv),
doCheck(Pids, Q, Nsent, Nrecv, []);

continue ->
sendStates(Pids, ToSend, noDelay),
doCheck(Pids, Q, Nsent + length(ToSend), Nrecv, noDelay);

die -> ok
after TimeOut -> % see next slide

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 14 / 18

Stern & Dill’s Approach (cont.)
The rest of the code

doCheck(Pids, Q, Nsent, Nrecv, ToSend) ->
TimeOut = if (hd(Pids) == self()) -> 1000; true -> infinity end,
receive

...
after TimeOut ->

[Pid ! doneQuery || Pid <- tl(Pids)], % send all Pids a done query
% check message counts
M = lists:sum([receive MessageCount, C -> C || + <- Pids]), if

M == 0 -> map(fun(Pid) -> Pid ! die end; Pids);
M /= 0 -> map(fun(Pid) -> Pid ! continue end; Pids)

end
end.

sendStates(State, Pids, ToSend) ->
if

ToSend == noDelay ->
nth(hashToPid(State), Pids) ! {state, State},
noDelay;

true -> [State, ToSend]
end.

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 15 / 18

Why Stern & Dill’s approach is correct

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 16 / 18

PReach: scaling it up to hundreds of processors

Issues
I Input queue overflow
I Load balancing
I Message batching

Results
I Used at Intel on clusters with several hundred machines.
I Current work on

F Adding checks for liveness properties.
F Performance: we always want bigger and faster.
F Robustness: how to keep going if a machine crashes.

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 17 / 18

Summary

Mark Greenstreet Model Checking CpSc 418 – Nov. 27, 2012 18 / 18

