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Lecture Outline

GPUs
I Early geometry engines.
I Adding functionality and programmability.
I GPGPUs

CUDA
I Execution Model
I Memory Model
I Code Snippets
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Before the first GPU

Early 1980’s: bit-blit hardware for simple 2D graphics.
Draw lines, simple curves, and text.
Fill rectangles and triangles.
Color used a “color map” to save memory:

I bit-wise logical operations on color map indices!
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1989: The SGI Geometry Engine

Basic rendering: coordinate transformation.
I Represent a 3D point with a 4-element vector.
I The fourth element is 1, and allows translations.
I Multiply vector by matrix to perform coordinate transformation.

Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.

I For example, a 32 × 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.

F A one-bit multiplier cell is about 50 transistors.
F That’s about 50K transistors for a very simple design.

30K is quite feasible using better architectures.
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1989: The SGI Geometry Engine

Basic rendering: coordinate transformation.
Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.

I For example, a 32 × 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.

F A one-bit multiplier cell is about 50 transistors.
F That’s about 50K transistors for a very simple design.

30K is quite feasible using better architectures.
I The 80486DX was also born in 1989.

F The 80486DX was 1.2M transistors, 16MHz, 13MIPs.
F That’s equal to 24 dedicated multipliers.
F 16 multiply-and-accumulate units running at 50MHz (easy in the

same 1µ process) produce 1.6GFlops!
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Why is dedicated hardware so much faster?
Consider a multiiplier:
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Building a better multiplier

Simple multiplier takes time O(N2).
Use carry-lookahead adders (compute carries with a scan)

I time is O(N log N)
I but the hardware is more complicated.

Use carry-save adders and one carry-lookahead at the end
I time is O(N)
I and the hardware is more simpler (than the all CLA design)

Add pipeline registers between rows
I throughput is one multiply per cycle.
I but the latency is O(N).
I Graphics and many numerical computations are very tolerant of

latency.

Mark Greenstreet GPUs and CUDA CpSc 418 – Nov. 22, 2011 6 / 17



The fundamental challenge of graphics

Human vision isn’t getting any better.
Once you can perform a graphics task at the limits of human
perception (or the limits of consumer budget for monitors), then
there’s no point in doing it any better.
Rapid advances in chip technology meant that coordinate
transformations (the specialty of the SGI Geometry Engine) were
soon as fast as anyone needed.
Graphics processors have evolved to include more functions. For
example,

I Shading
I Texture mapping

This led to a change from hardwired architectures, to
programmable ones.
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The GPGPU

General Purpose Graphics Processing Unit
The volume market is for graphics, and the highest profit is GPUs
for high-end gamers.

I Most of the computation is floating point.
I Latency doesn’t matter.
I Abundant parallelism.

Make the architecture fit the problem:
I SIMD – single instruction, multiple (parallel) data streams.

F Amortize control overhead over a large number of functional units.
F They call it SIMT (. . . , multiple threads) because they allow

conditional execution.
I High-latency operations

F Allows efficient, high-throughput, high-latency floating point units.
F Allows high latency accesses to off-chip memory.

I This means lots of threads per processor.
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The Fermi Architecture

instructions focus on scalar (rather than
vector) operations to match standard scalar
programming languages. Fermi implements
the PTX 2.0 instruction set architecture
(ISA), which targets C, Cþþ, Fortran,
OpenCL, and DirectCompute programs.
Instructions include

" 32-bit and 64-bit integer, addressing,
and floating-point arithmetic;

" load, store, and atomic memory access;
" texture and multidimensional surface

access;

" individual thread flow control with pre-
dicated instructions, branching, func-
tion calls, and indirect function calls
for Cþþ virtual functions; and

" parallel barrier synchronization.

CUDA cores
Each pipelined CUDA core executes a

scalar floating point or integer instruction
per clock for a thread. With 32 cores, the
streaming multiprocessor can execute up to
32 arithmetic thread instructions per clock.
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What does a core look like?

Picture to be drawn on the whiteboard.
Many parallel functional units – amortize control overhead.
Deeply pipelined for high throughput.
No bypassing – simplifies hardware

I But the software must be extensively multithreaded to get good
performance.
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Lecture Outline

GPUs
I been there, done that.

CUDA – we are here!
I Execution Model
I Memory Model
I Code Snippets
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Execution Model

The anatomy of a CUDA program
I A CUDA application consists of one or more thread blocks.
I A thread block consists of one or more warps.
I A warp consists of one or more threads.

Why?
I The program structure reflects the GPGPU architecture.
I To get good performance, the programmer needs to focus on

“more” for each “or more” mentioned above.
The next few slides describe the program structure in more detail,

I Working up from threads to applications.
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CUDA Threads

Sequential threads of execution.
Basically like normal C-code.

Mark Greenstreet GPUs and CUDA CpSc 418 – Nov. 22, 2011 13 / 17



CUDA Warps

Multiple threads that are executing the same code.
These will map to a “streaming multiprocessor” on the GPGPU.

I On Fermi, a streaming multiprocessor supports 32 parallel
operations.

I Thus, for optimal efficiency, a warp should have a multiple of 32
threads.

A word about conditionals:
I A thread can have control statements such as if.
I If all threads in a warp do the same thing at a conditional, execution

is efficient.
F Otherwise, the then threads will execute, while the else threads do

nothing,
F Likewise, the else threads will execute while the then threads do

nothing.
F Warning: CUDA doesn’t say that it’s then before else or any other

particular order. Don’t depend on the ordering.
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CUDA Thread Blocks

Multiple warps running on the same core.
Switching between warps handles pipeline hazards.
The warps in a block seem the same local memory – easy
communication.
Hardware support for barrier operations to synchronize the warps
of a block.
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The Fermi Memory Hierarchy
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