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Lecture Outline

@ GPUs
» Early geometry engines.
» Adding functionality and programmability.
» GPGPUs
e CUDA
» Execution Model
» Memory Model
» Code Snippets
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Before the first GPU

Early 1980’s: bit-blit hardware for simple 2D graphics.
@ Draw lines, simple curves, and text.

@ Fill rectangles and triangles.
@ Color used a “color map” to save memory:
» bit-wise logical operations on color map indices!
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1989: The SGI Geometry Engine

@ Basic rendering: coordinate transformation.
» Represent a 3D point with a 4-element vector.
» The fourth element is 1, and allows translations.
» Multiply vector by matrix to perform coordinate transformation.
@ Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.
» For example, a 32 x 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.
* A one-bit multiplier cell is about 50 transistors.
* That’s about 50K transistors for a very simple design.
30K is quite feasible using better architectures.
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1989: The SGI Geometry Engine

@ Basic rendering: coordinate transformation.

@ Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.
» For example, a 32 x 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.
* A one-bit multiplier cell is about 50 transistors.
* That’s about 50K transistors for a very simple design.
30K is quite feasible using better architectures.
» The 80486DX was also born in 1989.
* The 80486DX was 1.2M transistors, 16MHz, 13MIPs.
* That’s equal to 24 dedicated multipliers.
* 16 multiply-and-accumulate units running at 50MHz (easy in the
same 1u process) produce 1.6GFlops!
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Why is dedicated hardware so much faster?
Consider a multiiplier:
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Building a better multiplier

@ Simple multiplier takes time O(N?).
@ Use carry-lookahead adders (compute carries with a scan)
» time is O(Nlog N)
» but the hardware is more complicated.
@ Use carry-save adders and one carry-lookahead at the end
» time is O(N)
» and the hardware is more simpler (than the all CLA design)
@ Add pipeline registers between rows

» throughput is one multiply per cycle.

» but the latency is O(N).

» Graphics and many numerical computations are very tolerant of
latency.
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The fundamental challenge of graphics

Human vision isn’t getting any better.

@ Once you can perform a graphics task at the limits of human
perception (or the limits of consumer budget for monitors), then
there’s no point in doing it any better.

@ Rapid advances in chip technology meant that coordinate
transformations (the specialty of the SGI Geometry Engine) were
soon as fast as anyone needed.

@ Graphics processors have evolved to include more functions. For
example,

» Shading
» Texture mapping

@ This led to a change from hardwired architectures, to

programmable ones.
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The GPGPU

General Purpose Graphics Processing Unit
@ The volume market is for graphics, and the highest profit is GPUs
for high-end gamers.

» Most of the computation is floating point.
» Latency doesn’t matter.
» Abundant parallelism.

@ Make the architecture fit the problem:
» SIMD - single instruction, multiple (parallel) data streams.

* Amortize control overhead over a large number of functional units.
* They call it SIMT (..., multiple threads) because they allow
conditional execution.

» High-latency operations

* Allows efficient, high-throughput, high-latency floating point units.
* Allows high latency accesses to off-chip memory.

» This means lots of threads per processor.
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The Fermi Architecture

‘ Warp scheduler Warp scheduler ‘

/|
‘ Dispatch unit ‘ ‘ Dispatch unit ‘

Dispatch port

Operand collector -

(._ : " Interconnect network

FP = Floating point
INT = Integer arithmetic logic
LD/ST = Load/store

SFU = Special function unit Uniform cache
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What does a core look like?

@ Picture to be drawn on the whiteboard.
@ Many parallel functional units — amortize control overhead.

@ Deeply pipelined for high throughput.
@ No bypassing — simplifies hardware

» But the software must be extensively multithreaded to get good
performance.
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Lecture Outline

@ GPUs
» been there, done that.
@ CUDA — we are here!

» Execution Model
» Memory Model
» Code Snippets
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Execution Model

@ The anatomy of a CUDA program

» A CUDA application consists of one or more thread blocks.
» A thread block consists of one or more warps.
» A warp consists of one or more threads.

@ Why?
» The program structure reflects the GPGPU architecture.

» To get good performance, the programmer needs to focus on
“more” for each “or more” mentioned above.

@ The next few slides describe the program structure in more detalil,
» Working up from threads to applications.
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CUDA Threads

@ Sequential threads of execution.
@ Basically like normal C-code.
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CUDA Warps

@ Multiple threads that are executing the same code.
@ These will map to a “streaming multiprocessor” on the GPGPU.

» On Fermi, a streaming multiprocessor supports 32 parallel
operations.

» Thus, for optimal efficiency, a warp should have a multiple of 32
threads.

@ A word about conditionals:

» A thread can have control statements such as i f.
» If all threads in a warp do the same thing at a conditional, execution

is efficient.
* Otherwise, the then threads will execute, while the else threads do
nothing,
* Likewise, the else threads will execute while the then threads do
nothing.

* Warning: CUDA doesn'’t say that it's then before else or any other
particular order. Don’t depend on the ordering.
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CUDA Thread Blocks

@ Multiple warps running on the same core.
@ Switching between warps handles pipeline hazards.

@ The warps in a block seem the same local memory — easy
communication.

@ Hardware support for barrier operations to synchronize the warps
of a block.
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The Fermi Memory Hierarchy
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