Bitonic Sorting

Mark Greenstreet

CpSc 418 — Nov. 20, 2012

Mark Greenstreet Bitonic Sorting



Lecture Outline

@ Bitonic Sequences
@ Bitonic Merge
@ Bitonic Sort

Mark Greenstreet Bitonic Sorting



Bitonic Sequences

@ Definition
» A sequence is bitonic iff it consists of an ascending sequence
followed by a descending sequence or vice-versa.
» More formally, xo, X1, . .., X1 is bitonic iff

V<k<n-1.
(V0§i<k.x,-§x,-+1)/\(Vk§i<n—1.x,-2x,-+1)
V. (MO<i<k xi>xgi)ANNVk<i<n—1.x<Xp1)

@ Examples:
» [0,2,4,8,10,9,7,5, 3]
» [10,9,7,4,0,2,4,6,9, 14]
» [1,2,3,4,5]

> ]
» butnot[1,2,3,1,2,3]

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012 3/20



Properties of Bitonic Sequences

@ Subsequences of bitonic sequences are bitonic:

If x is bitonic and has length n, and

ifO0<ip<ih <...<im_1<n,

then [x;,, Xi,, - - - X;,_,] is bitonic.

This generalizes to k—tonic sequences, but we’ll only need the
bitonic version.

@ If x is an up—down bitonic sequence, then so is reverse(x).
Likewise for down—up sequences.

vV vyVvYyy

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012 4/20



Bitonic Sort in Erlang

sort(List, Up)
Sort List using the bitonic sorting algorithm.
If Up, sort the elements of List into ascending order.
Otherwise, sort them into descending order.
sort ([]1, -) —> [1;
sort ([A]l, -) —-> [A];
sort (X, Up) —->
{xX0, X1} = lists:split((length(X)+1) div 2, X),
{v0, Y1} = { sort (X0, Up), sort(Xl, not Up) },
merge (YO ++ Y1, Up). % Note: YO ++ Y1 is bitonic

oo oo

ol

o

Example:
@ Original list: [24, 46, 2, 12, 98, 16, 67, 78].
Split into two lists: [24, 46, 2, 12] and [98, 16, 67, 78].

o

@ Sort the first list ascending and the second descending:
(2, 12, 24, 46]and [98, 78, 67, 16]
o
o

Concatenate the two lists (bitonic result): [2, 12, 24, 46, 98, 78, 67, 16]
Perform bitonic merge: [2, 12, 16, 24, 46, 67, 78, 98]

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012 5/20



Bitonic Merge in Erlang

% merge(X, Up)
X is a bitonic sequence.
Return Y where Y is a list of the elements of X
in ascending order if Up is true and in descending order otherwise.

merge ([A], -) —> [A]; % base case
merge (X, Up) —-> % recursive case

% split X into “even” and “odd” indexed sublists

{x0, X1} = unshuffle(X),

Y0 = merge (X0, Up), % recursively merge each sublist

Yl = merge (X1, Up),

order ([], shuffle(Y0, Y1), Up). % compare-and-swap on even-odd pairs.

o o

o

Example:
@ Listto merge: [2, 12, 24, 46, 98, 78, 67, 16]
@ Unshuffle into even and odd lists: [2, 24, 98, 67] and [12, 46, 78, 16].
@ Recursively merge each list: (2, 24, 67, 98] and [12, 16, 46, 78].
@ Shuffle the merged sublists: [2, 12, 24, 16, 67, 46, 98, 78].
@ Compare-and-swap even-odd pairs: [2, 12, 16, 24, 46, 67, 78, 98].

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012 6/20



The order function

order(Acc, List, Up) % compare-and-swap even-odd pairs of List
into ascending order if Up is true, and descending order otherwise.
The result is assembled in Acc.
Note, this is a tail-recursive implementation that reverses the order
of List in the process. That’s OK because shuffle is tail recursive
as well and does another reverse that we cancel.

order (Acc, [], -) —-> Acc;

order (Acc, [A], -) —-> [A | Accl;

order (Acc, [A, B | T], Up) —->

o° o o o o o

order (
if
(A == B) or ((A < B) == 1Up) -> [A, B | Acc]l;
true -> [B, A | Acc]
end,
T, Up

Mark Greenstreet Bitonic Sorting



Why Bitonic Merge Works

@ Let X be a monotonically increasing sequence of 0’s and 1’s.
» E.g. X=10,0,0,0,0,0,1,1,1,1].

@ Let Y be a monotonically decreasing sequence of 0’s and 1’s.
» E.g. Y=1[1,1,1,0,0,0,0,0,0,0].

@ Let Z = concat(X, Y). Note: Z is bitonic.

> E'g' Z = [07070,070’0’171’171’171’170707070707070]’
= [o,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0],

Z = [0,0,0,1,1,1,1,0,0,0], % Zy is bitonic

Zy = [0,0,0,1,1,1,0,0,0,0], % Zj is bitonic.

@ The number of 1’s in Zy and Z; are nearly equal.

» If the sequence of 1’s in Z starts and ends at even-indexed
elements, then
NumberOfOnes(Z) = NumberOfOnes(Z;) + 1.

» If the sequence of 1’s in Z starts and ends at odd-indexed
elements, then
NumberOfOnes(Zp) = NumberOfOnes(Z) — 1.

» Otherwise, NumberOfOnes(Zp) = NumberOfOnes(Z1).

@ At most one compare-and-swap is needed at the end.

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012 8/20



For example...
@ Continuing with our earlier example:
Z = |

Zy = |

Zy = |

1,1,1,0,0,0,0,0,0,0],

@ Recursively apply the merge procedure to Z, and Z; to get sorted
lists, Sp and S;:

So = |
S1:[,,

@ Shuffle Sp and Sy to get Y:
Yy = Jo,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1]
@ Continued on next slide.

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012 9/20



continued example

@ Coloring Y to highlight odd-even pairs:

Y [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1 ,1,1], % from prev. slide

[0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1 ,1,1], % show even-odd pairs

@ Note that there is one pair that needs to be swapped. Applying a
compare-and-swap to each even-odd pair yields:

s = Jo,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1]

@ Sis sorted.

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012 10/20



More formally

@ Let Z be a bitonic sequence of 0's and 1’s
» Let nbe the length of Z. Index the elements of Z fromO0to n— 1.
» If Zis all 0’s, the bitonic network trivially sorts it.
» Otherwise, let i be the index of the first 1 in Z and j be the index of

the last 1.
@ Let X be the even-indexed elements of Z:
length(X) = [3]

xx = 0, if0<k< é 0r[£J<k<[g1
=1, i[5 <k=|}
@ Let X be the sorted elements of X:
% = 0, if0§k<HW+<[gwf¥Ji1)’
= 1, otherwise

@ Continued (next slide)

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012 11/20



More formally (slide 2)

@ Likewise, let Y be the odd-indexed elements of Z and Y be the

sorted elements of Y:

length(Y) = |[3]

Yk = 0,
- 1,
¥k = 0,
- 1,

Mark Greenstreet Bitonic Sorting

< /4]

otherwise

CpSc 418 — Nov. 20, 2012

12/20



If nis even

o Let,
Qk
Ak
Ik
I

Claim: ry is sorted.

= X2, if k is even
= j/(k_1)/2, if K is odd
= min(Qk, Qk+1), if kiseven
= max(gk_1,Qqk), if kisodd

Need to show V1 < k < n. re_1 < rg.

@ If k is odd, the claim follows directly from the definition of r.
@ If k is even, we need to show

max(Qgx—2, Gk—1) < MiN(Qx, Gk+1)

where m = k/2.

max(Xm—1, ¥m—1) < min(Xm, ¥m)

@ Because X1 < Xm and y,_1 < ym it is sufficient to show
Xm—1 < Vmand ¥m_1 < Xpm.

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012

13/20



nis even: show X, 1 =1= yn =1

@ Equivalently, we can show x,, 1 =1= y,» =1 and
.;/m_1 =1 =>5'(m=1.

Xm_1 =1, case assumption

m—1>[5]+ (18] - |5 —1). def. % i and} (slide 1)

=
= m> H-‘ + ({g] — HD , add 1 to both sides
DR T

= Pm=1, def. J (slide 12)

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012 14/20



nis even: show y,m 1 =1= X, =1

VYm_1 =1, case assumption
= m=12 3]+ (3]~ [4]). def. 7./ andj slide 12)
= m> EJ + (LgJ — [%]) + 1, add 1 to both sides
= mofd] el ). 1<
= m> ﬂ + ({g} - [éJ - 1), | 3] = [5] because nis even
= Xm=1, def. X (slide 11)

CpSc 418 — Nov. 20, 2012 15/20



If nis odd

@ Let,
Ak
Ak
lo
Ik
Ik

Claim: ry is sorted.

= X2, if k is even
= }N/(k,1)/2, if k is odd
= Qo

min(Qgk, gk+1), if k is odd
= max(gk_1,Qqk), if kiseven

Need to show V1 < k < n.lry_4 < rx.

@ Proof: similar to the nis even case. I'll write up the details for the

posted slides.

@ . bitonic merge is correct

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012 16/20



Structure of a bitonic sorting network

Mark Greenstreet Bitonic Sorting



Performance of bitonic sorting

Mark Greenstreet Bitonic Sorting



Bitonic sort on real computers

Mark Greenstreet Bitonic Sorting



Upcoming Lectures

@ Nov. 22: GPUs and CUDA
Read Dally and Nickolls, “The GPU Computing Era”

@ Nov. 27: Parallel Model Checking
Read Bingham?, de Paula, Erickson, Singh, and Reitblatt,
“Industrial Strength Distributed Explicit State Model Checking”

@ Nov. 29: Map-Reduce

Mark Greenstreet Bitonic Sorting CpSc 418 — Nov. 20, 2012 20/20



