Bitonic Sorting

Mark Greenstreet

CpSc 418 – Nov. 20, 2012
Lecture Outline

- Bitonic Sequences
- Bitonic Merge
- Bitonic Sort
Definition

- A sequence is **bitonic** iff it consists of an ascending sequence followed by a descending sequence or vice-versa.
- More formally, $x_0, x_1, \ldots, x_{n-1}$ is bitonic iff

\[
\exists 0 \leq k < n - 1.
\forall 0 \leq i < k. x_i \leq x_{i+1} \land \forall k \leq i < n - 1. x_i \geq x_{i+1}
\lor
\forall 0 \leq i < k. x_i \geq x_{i+1} \land \forall k \leq i < n - 1. x_i \leq x_{i+1}
\]

Examples:

- [0, 2, 4, 8, 10, 9, 7, 5, 3]
- [10, 9, 7, 4, 0, 2, 4, 6, 9, 14]
- [1, 2, 3, 4, 5]
- []
- but not [1, 2, 3, 1, 2, 3]
Properties of Bitonic Sequences

- Subsequences of bitonic sequences are bitonic:
 - If x is bitonic and has length n, and
 - if $0 \leq i_0 \leq i_1 \leq \ldots \leq i_{m-1} < n$,
 - then $[x_{i_0}, x_{i_1}, \ldots x_{i_{m-1}}]$ is bitonic.
 - This generalizes to k–tonic sequences, but we’ll only need the bitonic version.

- If x is an up→down bitonic sequence, then so is $\text{reverse}(x)$. Likewise for down→up sequences.
% sort(List, Up)
% Sort List using the bitonic sorting algorithm.
% If Up, sort the elements of List into ascending order.
% Otherwise, sort them into descending order.
sort([], _) -> [];
sort([A], _) -> [A];
sort(X, Up) ->
 {X0, X1} = lists:split((length(X)+1) div 2, X),
 {Y0, Y1} = { sort(X0, Up), sort(X1, not Up) },
 merge(Y0 ++ Y1, Up). % Note: Y0 ++ Y1 is bitonic

Example:

- Original list: [24, 46, 2, 12, 98, 16, 67, 78].
- Split into two lists: [24, 46, 2, 12] and [98, 16, 67, 78].
- Sort the first list ascending and the second descending:
 [2, 12, 24, 46] and [98, 78, 67, 16]
- Concatenate the two lists (bitonic result): [2, 12, 24, 46, 98, 78, 67, 16]
- Perform bitonic merge: [2, 12, 16, 24, 46, 67, 78, 98]
% merge(X, Up)
% X is a bitonic sequence.
% Return Y where Y is a list of the elements of X
% in ascending order if Up is true and in descending order otherwise.
merge([A], _) -> [A]; % base case
merge(X, Up) -> % recursive case
 % split X into ”even” and ”odd” indexed sublists
 {X0, X1} = unshuffle(X),
 Y0 = merge(X0, Up), % recursively merge each sublist
 Y1 = merge(X1, Up),
 order([], shuffle(Y0, Y1), Up). % compare-and-swap on even-odd pairs.

Example:
- List to merge: [2, 12, 24, 46, 98, 78, 67, 16]
- Unshuffle into even and odd lists: [2, 24, 98, 67] and [12, 46, 78, 16].
- Recursively merge each list: [2, 24, 67, 98] and [12, 16, 46, 78].
- Shuffle the merged sublists: [2, 12, 24, 16, 67, 46, 98, 78].
- Compare-and-swap even-odd pairs: [2, 12, 16, 24, 46, 67, 78, 98].
The `order` function

```prolog

% order(Acc, List, Up) % compare-and-swap even-odd pairs of List
% into ascending order if Up is true, and descending order otherwise.
% The result is assembled in Acc.
% Note, this is a tail-recursive implementation that reverses the order
% of List in the process. That’s OK because `shuffle` is tail recursive
% as well and does another reverse that we cancel.

order(Acc, [], _) -> Acc;
order(Acc, [A], _) -> [A | Acc];
order(Acc, [A, B | T], Up) ->
    order([A, B | T], Up) ->
        order(
            if
                (A == B) or ((A < B) == Up) -> [A, B | Acc];
                true -> [B, A | Acc]
            end,
            T, Up
        ).
```
Why Bitonic Merge Works

- Let X be a monotonically increasing sequence of 0’s and 1’s.
 - E.g. $X = [0, 0, 0, 0, 0, 1, 1, 1, 1]$.
- Let Y be a monotonically decreasing sequence of 0’s and 1’s.
 - E.g. $Y = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0]$.
- Let $Z = \text{concat}(X, Y)$. Note: Z is bitonic.
 - E.g. $Z = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]$,
 $Z_0 = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0]$, % Z_0 is bitonic
 $Z_1 = [0, 0, 0, 1, 1, 1, 0, 0, 0, 0]$, % Z_1 is bitonic.

- The number of 1’s in Z_0 and Z_1 are nearly equal.
 - If the sequence of 1’s in Z starts and ends at even-indexed elements, then
 $\text{NumberOfOnes}(Z_0) = \text{NumberOfOnes}(Z_1) + 1$.
 - If the sequence of 1’s in Z starts and ends at odd-indexed elements, then
 $\text{NumberOfOnes}(Z_0) = \text{NumberOfOnes}(Z_1) - 1$.
 - Otherwise, $\text{NumberOfOnes}(Z_0) = \text{NumberOfOnes}(Z_1)$.

- At most one compare-and-swap is needed at the end.
For example...

Continuing with our earlier example:

\[Z = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] , \]
\[Z_0 = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0] , \]
\[Z_1 = [0, 0, 0, 1, 1, 1, 0, 0, 0, 0] . \]

Recursively apply the merge procedure to \(Z_0 \) and \(Z_1 \) to get sorted lists, \(S_0 \) and \(S_1 \):

\[S_0 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1] , \]
\[S_1 = [0, 0, 0, 0, 0, 0, 1, 1, 1] \]

Shuffle \(S_0 \) and \(S_1 \) to get \(Y \):

\[Y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1] \]

Continued on next slide.
Coloring Y to highlight odd-even pairs:

$$Y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1], \quad \% \text{from prev. slide}$$

$$= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1], \quad \% \text{show even-odd pairs}$$

Note that there is one pair that needs to be swapped. Applying a compare-and-swap to each even-odd pair yields:

$$S = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]$$

S is sorted.
More formally

- Let \(Z \) be a bitonic sequence of 0’s and 1’s
 - Let \(n \) be the length of \(Z \). Index the elements of \(Z \) from 0 to \(n - 1 \).
 - If \(Z \) is all 0’s, the bitonic network trivially sorts it.
 - Otherwise, let \(i \) be the index of the first 1 in \(Z \) and \(j \) be the index of the last 1.

- Let \(X \) be the even-indexed elements of \(Z \):
 \[
 \text{length}(X) = \left\lceil \frac{n}{2} \right\rceil \\
 x_k = \begin{cases}
 0, & \text{if } 0 \leq k < \left\lfloor \frac{i}{2} \right\rfloor \text{ or } \left\lfloor \frac{j}{2} \right\rfloor < k < \left\lceil \frac{n}{2} \right\rceil \\
 1, & \text{if } \left\lfloor \frac{i}{2} \right\rfloor \leq k \leq \left\lfloor \frac{i}{2} \right\rfloor
 \end{cases}
 \]

- Let \(\tilde{X} \) be the sorted elements of \(X \):
 \[
 \tilde{x}_k = \begin{cases}
 0, & \text{if } 0 \leq k < \left\lfloor \frac{i}{2} \right\rfloor + \left(\left\lceil \frac{n}{2} \right\rceil - \left\lfloor \frac{i}{2} \right\rfloor - 1 \right), \\
 1, & \text{otherwise}
 \end{cases}
 \]

- Continued (next slide)
Likewise, let \(Y \) be the odd-indexed elements of \(Z \) and \(\tilde{Y} \) be the sorted elements of \(Y \):

\[
\text{length}(Y) = \left\lfloor \frac{n}{2} \right\rfloor
\]

\[
y_k = 0, \quad \text{if } 0 \leq k < \left\lfloor \frac{i}{2} \right\rfloor \text{ or } \left\lfloor \frac{j}{2} \right\rfloor \leq k < \left\lfloor \frac{n}{2} \right\rfloor
\]

\[
y_k = 1, \quad \text{if } \left\lfloor \frac{i}{2} \right\rfloor \leq k \leq \left\lfloor \frac{j}{2} \right\rfloor
\]

\[
\tilde{y}_k = 0, \quad \text{if } 0 \leq k < \left\lfloor \frac{i}{2} \right\rfloor + \left(\left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{i}{2} \right\rfloor \right)
\]

\[
\tilde{y}_k = 1, \quad \text{otherwise}
\]
If n is even

- Let,

$$
q_k = \tilde{x}_k/2, \quad \text{if } k \text{ is even} \\
q_k = \tilde{y}_{(k-1)/2}, \quad \text{if } k \text{ is odd} \\
r_k = \min(q_k, q_{k+1}), \quad \text{if } k \text{ is even} \\
r_k = \max(q_{k-1}, q_k), \quad \text{if } k \text{ is odd}
$$

Claim: r_k is sorted. Need to show $\forall 1 \leq k < n. \ r_{k-1} \leq r_k$.

- If k is odd, the claim follows directly from the definition of r.

- If k is even, we need to show

$$
\max(q_{k-2}, q_{k-1}) \leq \min(q_k, q_{k+1}) \\
\equiv \max(\tilde{x}_{m-1}, \tilde{y}_{m-1}) \leq \min(\tilde{x}_m, \tilde{y}_m)
$$

where $m = k/2$.

- Because $\tilde{x}_{m-1} \leq \tilde{x}_m$ and $\tilde{y}_{m-1} \leq \tilde{y}_m$ it is sufficient to show $\tilde{x}_{m-1} \leq \tilde{y}_m$ and $\tilde{y}_{m-1} < \tilde{x}_m$.

Mark Greenstreet

CpSc 418 – Nov. 20, 2012 13 / 20
\(n\) is even: show \(\tilde{x}_{m-1} = 1 \Rightarrow \tilde{y}_m = 1\)

- Equivalently, we can show \(\tilde{x}_{m-1} = 1 \Rightarrow \tilde{y}_m = 1\) and \(\tilde{y}_{m-1} = 1 \Rightarrow \tilde{x}_m = 1\).

\[
\tilde{x}_{m-1} = 1, \quad \text{case assumption}
\]

\[
\Rightarrow m - 1 \geq \left\lfloor \frac{i}{2} \right\rfloor + \left(\left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{i}{2} \right\rfloor - 1 \right), \quad \text{def. } \tilde{x}, i, \text{ and } j \text{ (slide 11)}
\]

\[
\Rightarrow m \geq \left\lfloor \frac{i}{2} \right\rfloor + \left(\left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{i}{2} \right\rfloor \right), \quad \text{add 1 to both sides}
\]

\[
\Rightarrow m \geq \left\lfloor \frac{i}{2} \right\rfloor + \left(\left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{i}{2} \right\rfloor \right), \quad \left\lfloor \frac{i}{2} \right\rfloor \leq \left\lfloor \frac{i}{2} \right\rfloor
\]

\[
\Rightarrow \tilde{y}_m = 1, \quad \text{def. } \tilde{y} \text{ (slide 12)}
\]
\(n \) is even: show \(\tilde{y}_{m-1} = 1 \Rightarrow \tilde{x}_m = 1 \)

\[\tilde{y}_{m-1} = 1, \quad \text{case assumption} \]

\[\Rightarrow m - 1 \geq \left\lfloor \frac{i}{2} \right\rfloor + \left(\left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{i}{2} \right\rfloor \right), \quad \text{def. } \tilde{y}, i, \text{ and } j \text{ (slide 12)} \]

\[\Rightarrow m \geq \left\lfloor \frac{i}{2} \right\rfloor + \left(\left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{i}{2} \right\rfloor \right) + 1, \quad \text{add 1 to both sides} \]

\[\Rightarrow m \geq \left\lfloor \frac{i}{2} \right\rfloor + \left(\left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{i}{2} \right\rfloor - 1 \right), \quad \left\lfloor \frac{i}{2} \right\rfloor - 1 \leq \left\lfloor \frac{i}{2} \right\rfloor \]

\[\Rightarrow m \geq \left\lfloor \frac{i}{2} \right\rfloor + \left(\left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{i}{2} \right\rfloor - 1 \right), \quad \left\lfloor \frac{n}{2} \right\rfloor = \left\lfloor \frac{n}{2} \right\rfloor \text{ because } n \text{ is even} \]

\[\Rightarrow \tilde{x}_m = 1, \quad \text{def. } \tilde{x} \text{ (slide 11)} \]
If \(n \) is odd

- Let,

\[
q_k = \begin{cases}
\tilde{x}_k/2, & \text{if } k \text{ is even} \\
\tilde{y}_{(k-1)/2}, & \text{if } k \text{ is odd}
\end{cases}
\]

\[
r_0 = q_0,
\]

\[
r_k = \begin{cases}
\min(q_k, q_{k+1}), & \text{if } k \text{ is odd} \\
\max(q_{k-1}, q_k), & \text{if } k \text{ is even}
\end{cases}
\]

Claim: \(r_k \) is sorted. Need to show \(\forall 1 \leq k < n. lr_{k-1} \leq r_k \).

- Proof: similar to the \(n \) is even case. I’ll write up the details for the posted slides.

\(\therefore \) bitonic merge is correct
Structure of a bitonic sorting network
Performance of bitonic sorting
Bitonic sort on real computers
Upcoming Lectures

- Nov. 22: GPUs and CUDA
 Read Dally and Nickolls, “The GPU Computing Era”

- Nov. 27: Parallel Model Checking
 Read Bingham, de Paula, Erickson, Singh, and Reitblatt,
 “Industrial Strength Distributed Explicit State Model Checking”

- Nov. 29: Map-Reduce