
Bitonic Sorting

Mark Greenstreet

CpSc 418 – Nov. 20, 2012

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 1 / 20



Lecture Outline

Bitonic Sequences
Bitonic Merge
Bitonic Sort

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 2 / 20



Bitonic Sequences

Definition
I A sequence is bitonic iff it consists of an ascending sequence

followed by a descending sequence or vice-versa.
I More formally, x0, x1, . . . , xn−1 is bitonic iff

∃0 ≤ k < n − 1.
(∀0 ≤ i < k . xi ≤ xi+1) ∧ (∀k ≤ i < n − 1. xi ≥ xi+1)

∨ (∀0 ≤ i < k . xi ≥ xi+1) ∧ (∀k ≤ i < n − 1. xi ≤ xi+1)

Examples:
I [0, 2, 4, 8, 10, 9, 7, 5, 3]
I [10, 9, 7, 4, 0, 2, 4, 6, 9, 14]
I [1, 2, 3, 4, 5]
I []
I but not [1, 2, 3, 1, 2, 3]

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 3 / 20



Properties of Bitonic Sequences

Subsequences of bitonic sequences are bitonic:
I If x is bitonic and has length n, and
I if 0 ≤ i0 ≤ i1 ≤ . . . ≤ im−1 < n,
I then [xi0 , xi1 , . . . xim−1 ] is bitonic.
I This generalizes to k−tonic sequences, but we’ll only need the

bitonic version.

If x is an up→down bitonic sequence, then so is reverse(x).
Likewise for down→up sequences.

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 4 / 20



Bitonic Sort in Erlang

% sort(List, Up)
% Sort List using the bitonic sorting algorithm.
% If Up, sort the elements of List into ascending order.
% Otherwise, sort them into descending order.
sort([], ) -> [];
sort([A], ) -> [A];
sort(X, Up) ->
{X0, X1} = lists:split((length(X)+1) div 2, X),
{Y0, Y1} = { sort(X0, Up), sort(X1, not Up) },
merge(Y0 ++ Y1, Up). % Note: Y0 ++ Y1 is bitonic

Example:
Original list: [24, 46, 2, 12, 98, 16, 67, 78].
Split into two lists: [24, 46, 2, 12] and [98, 16, 67, 78].
Sort the first list ascending and the second descending:
[2, 12, 24, 46] and [98, 78, 67, 16]

Concatenate the two lists (bitonic result): [2, 12, 24, 46, 98, 78, 67, 16]

Perform bitonic merge: [2, 12, 16, 24, 46, 67, 78, 98]

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 5 / 20



Bitonic Merge in Erlang

% merge(X, Up)
% X is a bitonic sequence.
% Return Y where Y is a list of the elements of X
% in ascending order if Up is true and in descending order otherwise.
merge([A], ) -> [A]; % base case
merge(X, Up) -> % recursive case

% split X into ”even” and ”odd” indexed sublists
{X0, X1} = unshuffle(X),
Y0 = merge(X0, Up), % recursively merge each sublist
Y1 = merge(X1, Up),
order([], shuffle(Y0, Y1), Up). % compare-and-swap on even-odd pairs.

Example:
List to merge: [2, 12, 24, 46, 98, 78, 67, 16]

Unshuffle into even and odd lists: [2, 24, 98, 67] and [12, 46, 78, 16].
Recursively merge each list: [2, 24, 67, 98] and [12, 16, 46, 78].
Shuffle the merged sublists: [2, 12, 24, 16, 67, 46, 98, 78].
Compare-and-swap even-odd pairs: [2, 12, 16, 24, 46, 67, 78, 98].

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 6 / 20



The order function

% order(Acc, List, Up) % compare-and-swap even-odd pairs of List
% into ascending order if Up is true, and descending order otherwise.
% The result is assembled in Acc.
% Note, this is a tail-recursive implementation that reverses the order
% of List in the process. That’s OK because shuffle is tail recursive
% as well and does another reverse that we cancel.
order(Acc, [], ) -> Acc;
order(Acc, [A], ) -> [A | Acc];
order(Acc, [A, B | T], Up) ->

order(
if

(A == B) or ((A < B) == Up) -> [A, B | Acc];
true -> [B, A | Acc]

end,
T, Up

).

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 7 / 20



Why Bitonic Merge Works
Let X be a monotonically increasing sequence of 0’s and 1’s.

I E.g. X = [0,0,0,0,0,0,1,1,1,1].
Let Y be a monotonically decreasing sequence of 0’s and 1’s.

I E.g. Y = [1,1,1,0,0,0,0,0,0,0].
Let Z = concat(X ,Y ). Note: Z is bitonic.

I E.g. Z = [0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
= [0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0],

Z0 = [0,0,0,1,1,1,1,0,0,0], % Z0 is bitonic
Z1 = [0,0,0,1,1,1,0,0,0,0], % Z1 is bitonic.

The number of 1’s in Z0 and Z1 are nearly equal.
I If the sequence of 1’s in Z starts and ends at even-indexed

elements, then
NumberOfOnes(Z0) = NumberOfOnes(Z1) + 1.

I If the sequence of 1’s in Z starts and ends at odd-indexed
elements, then
NumberOfOnes(Z0) = NumberOfOnes(Z1)− 1.

I Otherwise, NumberOfOnes(Z0) = NumberOfOnes(Z1).
At most one compare-and-swap is needed at the end.

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 8 / 20



For example...

Continuing with our earlier example:

Z = [0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
Z0 = [0,0,0,1,1,1,1,0,0,0],
Z1 = [0,0,0,1,1,1,0,0,0,0].

Recursively apply the merge procedure to Z0 and Z1 to get sorted
lists, S0 and S1:

S0 = [0,0,0,0,0,0,1,1,1,1],
S1 = [0,0,0,0,0,0,0,1,1,1]

Shuffle S0 and S1 to get Y :

Y = [0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1]

Continued on next slide.

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 9 / 20



continued example

Coloring Y to highlight odd-even pairs:

Y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1], % from prev. slide
= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1], % show even-odd pairs

Note that there is one pair that needs to be swapped. Applying a
compare-and-swap to each even-odd pair yields:

S = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1]

S is sorted.

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 10 / 20



More formally
Let Z be a bitonic sequence of 0’s and 1’s

I Let n be the length of Z . Index the elements of Z from 0 to n − 1.
I If Z is all 0’s, the bitonic network trivially sorts it.
I Otherwise, let i be the index of the first 1 in Z and j be the index of

the last 1.

Let X be the even-indexed elements of Z :

length(X ) =
⌈n

2

⌉
xk = 0, if 0 ≤ k <

⌈
i
2

⌉
or
⌊

j
2

⌋
< k <

⌈n
2

⌉
= 1, if

⌈
i
2

⌉
≤ k ≤

⌊
j
2

⌋
Let X̃ be the sorted elements of X :

x̃k = 0, if 0 ≤ k <
⌈

i
2

⌉
+
(⌈n

2

⌉
−
⌊

j
2

⌋
− 1
)
,

= 1, otherwise

Continued (next slide)

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 11 / 20



More formally (slide 2)

Likewise, let Y be the odd-indexed elements of Z and Ỹ be the
sorted elements of Y :

length(Y ) =
⌊n

2

⌋
yk = 0, if 0 ≤ k <

⌊
i
2

⌋
or
⌈

j
2

⌉
≤ k <

⌊n
2

⌋
= 1, if

⌊
i
2

⌋
≤ k ≤

⌈
j
2

⌉
ỹk = 0, if 0 ≤ k <

⌊
i
2

⌋
+
(⌊n

2

⌋
−
⌈

j
2

⌉)
= 1, otherwise

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 12 / 20



If n is even

Let,
qk = x̃k/2, if k is even
qk = ỹ(k−1)/2, if k is odd
rk = min(qk ,qk+1), if k is even
rk = max(qk−1,qk ), if k is odd

Claim: rk is sorted. Need to show ∀1 ≤ k < n. rk−1 ≤ rk .
If k is odd, the claim follows directly from the definition of r .
If k is even, we need to show

max(qk−2,qk−1) ≤ min(qk ,qk+1)
≡ max(x̃m−1, ỹm−1) ≤ min(x̃m, ỹm)

where m = k/2.
Because x̃m−1 ≤ x̃m and ỹm−1 ≤ ỹm it is sufficient to show
x̃m−1 ≤ ỹm and ỹm−1 < x̃m.

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 13 / 20



n is even: show x̃m−1 = 1⇒ ỹm = 1

Equivalently, we can show x̃m−1 = 1⇒ ỹm = 1 and
ỹm−1 = 1⇒ x̃m = 1.

x̃m−1 = 1, case assumption

⇒ m − 1 ≥
⌈

i
2

⌉
+
(⌈n

2

⌉
−
⌊

j
2

⌋
− 1
)
, def. x̃, i , and j (slide 11)

⇒ m ≥
⌈

i
2

⌉
+
(⌈n

2

⌉
−
⌊

j
2

⌋)
, add 1 to both sides

⇒ m ≥
⌊

i
2

⌋
+
(⌊n

2

⌋
−
⌈

j
2

⌉)
,

⌊
i
2

⌋
≤
⌈

i
2

⌉
⇒ ỹm = 1, def. ỹ (slide 12)

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 14 / 20



n is even: show ỹm−1 = 1⇒ x̃m = 1

ỹm−1 = 1, case assumption

⇒ m − 1 ≥
⌊

i
2

⌋
+
(⌊n

2

⌋
−
⌈

j
2

⌉)
, def. ỹ, i , and j (slide 12)

⇒ m ≥
⌊

i
2

⌋
+
(⌊n

2

⌋
−
⌈

j
2

⌉)
+ 1, add 1 to both sides

⇒ m ≥
⌈

i
2

⌉
+
(⌊n

2

⌋
−
⌊

j
2

⌋
− 1
)
,
⌈

i
2

⌉
− 1 ≤

⌊
i
2

⌋
⇒ m ≥

⌈
i
2

⌉
+
(⌈n

2

⌉
−
⌊

j
2

⌋
− 1
)
,
⌊n

2

⌋
=
⌈n

2

⌉
because n is even

⇒ x̃m = 1, def. x̃ (slide 11)

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 15 / 20



If n is odd

Let,
qk = x̃k/2, if k is even
qk = ỹ(k−1)/2, if k is odd
r0 = q0,
rk = min(qk ,qk+1), if k is odd
rk = max(qk−1,qk ), if k is even

Claim: rk is sorted. Need to show ∀1 ≤ k < n.lrk−1 ≤ rk .
Proof: similar to the n is even case. I’ll write up the details for the
posted slides.
∴ bitonic merge is correct

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 16 / 20



Structure of a bitonic sorting network

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 17 / 20



Performance of bitonic sorting

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 18 / 20



Bitonic sort on real computers

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 19 / 20



Upcoming Lectures

Nov. 22: GPUs and CUDA
Read Dally and Nickolls, “The GPU Computing Era”
Nov. 27: Parallel Model Checking
Read Bingham2, de Paula, Erickson, Singh, and Reitblatt,
“Industrial Strength Distributed Explicit State Model Checking”
Nov. 29: Map-Reduce

Mark Greenstreet Bitonic Sorting CpSc 418 – Nov. 20, 2012 20 / 20


