Sorting Networks

Mark Greenstreet

CpSc 418 — Nov. 15, 2012

Mark Greenstreet Sorting Networks

Lecture Outline

@ Parallelizing mergesort and/or quicksort
@ Sorting Networks
@ Bitonic Sorting

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 1/14

Parallelizing Mergesort

- O 14
= 11 99
4 16

|
| [

[E—
?
[E—
ANy P
|
[\
=
—_ =
— |~

16
;@D* 0 =6

|
(@) (e}
|
(o)

p—
(o)}
—|\O
(o)} =}
O
\O
|
\S] (@)

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 2/14

Parallelizing Mergesort

S

/P
N/P
/P
/
/
/P
/
/P

2

SIE

&)

EZ

&)

2

Mark Greenstreet

(M)

&)

2N

L 4N
P

2N

P

2N

L 4N
P

Sorting Networks

CpSc 418 — Nov. 15, 2012

2/14

Parallelizing Mergesort

w7

N/P P)@D_,"ﬂ
P

N/P ONE

i

w7

N/P P)@D_,"ﬂ
P

2Ny,

N/P

Mark Greenstreet

Sorting Networks

N

CpSc 418 — Nov. 15, 2012

2/14

Parallelizing Mergesort

N/P
N/P

(M)

)~

4N

P

N

Total time: & (log N +2(P — 1) — log P) + (log P)X

Mark Greenstreet

Sorting Networks

CpSc 418 — Nov. 15, 2012

2/14

Parallelizing Quicksort

Mark Greenstreet Sorting Networks

Sorting Networks

Sorting Network for 2—elements

in[1]—=a max|— out[0]

iN[0] —={b minf—=out[1]

A Sorting Network for 3—elements

in[2] —]a max =la max}— out[2]

in[1]—=b min a max b min—=out[1]

in[O] b min out[0]

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012

4/14

Sorting Networks — Drawing

in[2] —-{a max a max|— out[2]

in[1]—=1b min a max b minf—out[1]

in[0] b min out[0]
in[2] out[2] in[2] out[2]
— A A —
~in[1] ! out[1] in[1] out[1]
in[0] out[0] in[0] out[0]

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 5/14

Sorting Networks — Examples

sort—4 sort—5 (v1) sort—5 (v2)

S

*—o

*—o
*—o

11

*—o

[e]

sort—8

*—o

*—o

e—o 60 o6 o o o
*—o

See: http://pages.ripco.net/~jgamble/nw.html

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 6/14

http://pages.ripco.net/~jgamble/nw.html

Sorting Networks: Definition

Structural version:
An N-input sorting network is either:

The identity A sorting network composed with a
function compare-and-swap element
inN[n—-1]—= out[n-1] | in[n-1] — out[n-1]
in[n-2]—= out[n-2] | in[n-2] —= < s out[n-2]
(@] °
Bl e ;
é — 0Ut[!+1]
. |5 o
. o | E . out[j-1]
o .
. - out[i+1]
— > out[i]
= out[i-1]
in[0]— out[0] in[0] —— ———out[0]

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 7/14

Sorting Networks: Definition
Decision-tree version:

x2 y2
x1 yl —
x0 o y0

@ Let v be an arbitrary vertex of a decision tree, and let x; and x; be

the variables compared at vertex v.
@ A decision tree is a sorting network iff for every such vertex, the

left subtree is the same as the right subtree with x; and x;

exchanged.

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 8/14

The 0-1 Principle

If a sorting network correctly sorts all inputs consisting only of 0’s and
1’s, then it correctly sorts inputs of any values.

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 9/14

Monotonicity Lemma

Lemma: sorting networks commute with monotonic functions.
@ Let D and E be two domains, each with an ordering relation.
@ f:D — Eis monotonic iff

vx,y €D. x <y — f(x) < f(y)
@ We extend f element-wise to vectors:
f(Ixo, 15+« Xn—1]) = [f(%0), F(x1), - - -, F(Xn—1)]

@ We can view an n-input sorting network, S as a function on vectors of length n.
@ The monotonicity lemma statesthat fe S = Sef.

@ We prove the monotonicity lemma by induction on the structure of the sorting network
(next slide).

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 10/14

Monotonicity Lemma (proof)

By induction. Base case:

sorting network sorting network

The sorting network, S, is the identity function.

feS = feident = f = identef = Sef

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 11/14

Monotonicity Lemma (proof)

Induction step: Let Sy be a sorting network, and append a
compare-and-swap to outputs / and j.

— Yn_1 n—1 5 Xn_1
PR . 7= Ny WA) (/S8
Yn_—2 Zp_1 = Xn—2
PRI /= B 7= Ny WA = 1
< 5 <
=) Xj)
x—= § {14~ §
5 ? 5
= = =
=4 X g
Xi—> € x,-*>| : '—*—» =
St St
=] =3
w w
X
Xo —> xo—>{ '—‘2—’
X
Xy > X1*’i '—‘_’
@ X
X0 > X0 LT
So So

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 11/14

Monotonicity Lemma (proof)

Definitions:
@ S is a sorting network, and

@ cas;; is a compare-and-swap unit that compares the i and ;"
outputs of Sy to produce the i and j outputs of S.

@ Without loss of generality, assume that the smaller value is output
to the the i output of S.

@ Let x denote any input vectorto Se f (or fe S).

@ Lety = Syp(x), z= S(x), x = f(x), y = f(y), and Z = f(z), and
2 = cas; j(So(f(x)))-

@ We need to show that Z = Z.

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 11/14

Monotonicity Lemma (proof)
Induction step: show 2 = Z.

@ Forany k ¢ {i,j},

Zk

@ The i output:

A

Zi =

(cas;j(So(f(x))))k, definition of Z

= (So(f(x)))ks definition of cas,;

= (f(So(x)))«k induction hypothesis

= ¥, definition of y

= Z, definition of cas;
(cas; j(So(f(x))))k, definition of 2
min((So(f(x)))i

i (So(f(x)3)), definition of cas;

min((f(So(x));, (f(So(x)) jﬁ, induction hypothesis
f(min((So(x)i, (So(x));)s f is monotonic
f(cas; j((So(x))i, (So(x));)), definition of cas;;

Zj,

definition of Z

@ The j output: equivalent to the argument for the i output.

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012

11/14

The 0-1 Principle

If a sorting network correctly sorts all inputs consisting only of 0’s and
1’s, then it correctly sorts inputs of any values.

I’ll prove the contrapositive.

@ If a sorting network does not correctly sort inputs of any values, then it
does not correctly sort all inputs consisting only of 0’'s and 1’s.

@ Let S be a sorting network, let x be an input vector, and let y = S(x),
such that there exist j and j with i < j such that y; > ;.

@ Let f(x) = 0, ifx <y;
= 17 if x > Yi
y = S(f(x))

@ By the definition of f, f(x) is an input consisting only of 0’s and 1’s.
@ By the monotonicity lemma, y = f(y). Thus,

yio=1fy) =1 >0 = fy) =¥
@ Therefore, S does not correctly sort an input consisting only of 0’s and
1’s.
O

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 12/14

Announcements and reminders

@ Nov. 22: Review Lin & Snyder, Chapter 5, Scalable Parallelism
(the Bitonic Sort example).
Start reading Lin & Snyder Chapter 6: Programming with Threads

@ Nov. 24: Finish reading Lin & Snyder Chapter 6.

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 13/14

Review

@ Why don’t traditional, sequential sorting algorithms parallelize
well?

@ Try to parallelize another sequential sorting algorithm such as
heap sort? What issues do you encounter?

@ We proved that 0-1 principle for sorting networks. Show that the
0-1 principle does not apply to arbitary programs. In particular,
show a simple program (sequential is fine) that sorts all inputs of
0’s and 1’s correctly, but does not sort arbitary inputs correctly.

Mark Greenstreet Sorting Networks CpSc 418 — Nov. 15, 2012 14/14

