Sorting Networks

Mark Greenstreet

CpSc 418 - Nov. 15, 2012

Lecture Outline

- Parallelizing mergesort and/or quicksort
- Sorting Networks
- Bitonic Sorting

Total time: $\frac{N}{P} (\log N + 2(P-1) - \log P) + (\log P)\lambda$

Parallelizing Quicksort

Sorting Networks

A Sorting Network for 3-elements

Sorting Networks - Drawing

Sorting Networks – Examples

See: http://pages.ripco.net/~jgamble/nw.html

Sorting Networks: Definition

Structural version:

An N-input sorting network is either:

Sorting Networks: Definition

Decision-tree version:

- Let v be an arbitrary vertex of a decision tree, and let x_i and x_j be the variables compared at vertex v.
- A decision tree is a sorting network iff for every such vertex, the left subtree is the same as the right subtree with x_i and x_j exchanged.

The 0-1 Principle

If a sorting network correctly sorts all inputs consisting only of 0's and 1's, then it correctly sorts inputs of any values.

Monotonicity Lemma

Lemma: sorting networks commute with monotonic functions.

- lacktriangle Let $\mathbb D$ and $\mathbb E$ be two domains, each with an ordering relation.
- \bullet $f: \mathbb{D} \to \mathbb{E}$ is monotonic iff

$$\forall x, y \in \mathbb{D}. \ x \leq y \rightarrow f(x) \leq f(y)$$

We extend f element-wise to vectors:

$$f([x_0, x_1, \ldots, x_{n-1}]) = [f(x_0), f(x_1), \ldots, f(x_{n-1})]$$

- We can view an n-input sorting network, *S* as a function on vectors of length *n*.
- The monotonicity lemma states that $f \bullet S \equiv S \bullet f$.
- We prove the monotonicity lemma by induction on the structure of the sorting network (next slide).

By induction. Base case:

The sorting network, *S*, is the identity function.

$$f \bullet S = f \bullet ident = f = ident \bullet f = S \bullet f$$

Induction step: Let S_0 be a sorting network, and append a compare-and-swap to outputs i and j.

Definitions:

- S₀ is a sorting network, and
- $cas_{i,j}$ is a compare-and-swap unit that compares the i^{th} and j^{th} outputs of S_0 to produce the i^{th} and j^{th} outputs of S.
- Without loss of generality, assume that the smaller value is output to the ith output of S.
- Let x denote any input vector to $S \bullet f$ (or $f \bullet S$).
- Let $y = S_0(x)$, z = S(x), $\tilde{x} = f(x)$, $\tilde{y} = f(y)$, and $\tilde{z} = f(z)$, and $\hat{z} = \cos_{i,j}(S_0(f(x)))$.
- We need to show that $\hat{z} = \tilde{z}$.

Induction step: show $\hat{z} = \tilde{z}$.

• For any $k \notin \{i, j\}$,

$$\hat{z}_k = (\cos_{i,j}(S_0(f(x))))_k$$
, definition of \hat{z}
 $= (S_0(f(x)))_k$, definition of $\cos_{i,j}$
 $= (f(S_0(x)))_k$ induction hypothesis
 $= \tilde{y}_k$, definition of \tilde{y}
 $= \tilde{z}_k$, definition of $\cos_{i,j}$

• The *i*th output:

$$\hat{z}_i = (\operatorname{cas}_{i,j}(S_0(f(x))))_k, & \operatorname{definition of } \hat{z} \\ = \min((S_0(f(x)))_i, (S_0(f(x)))_j), & \operatorname{definition of } \operatorname{cas}_{i,j} \\ = \min((f(S_0(x))_i, (f(S_0(x)))_j), & \operatorname{induction hypothesis} \\ = f(\min((S_0(x)_i, (S_0(x))_j), & f \text{ is monotonic} \\ = f(\operatorname{cas}_{i,j}((S_0(x))_i, (S_0(x))_j)), & \operatorname{definition of } \operatorname{cas}_{i,j} \\ = \tilde{z}_i, & \operatorname{definition of } \tilde{z} \end{aligned}$$

• The j^{th} output: equivalent to the argument for the i^{th} output.

The 0-1 Principle

If a sorting network correctly sorts all inputs consisting only of 0's and 1's, then it correctly sorts inputs of any values.

I'll prove the contrapositive.

- If a sorting network does not correctly sort inputs of any values, then it does not correctly sort all inputs consisting only of 0's and 1's.
- Let S be a sorting network, let x be an input vector, and let y = S(x), such that there exist i and j with i < j such that $y_i > y_j$.

• Let
$$f(x) = 0$$
, if $x < y_i$
= 1, if $x \ge y_i$
 $\tilde{y} = S(f(x))$

- By the definition of f, f(x) is an input consisting only of 0's and 1's.
- By the monotonicity lemma, $\tilde{y} = f(y)$. Thus,

$$\tilde{y}_i = f(y_i) = 1 > 0 = f(y_j) = \tilde{y}_j$$

- Therefore, S does not correctly sort an input consisting only of 0's and 1's.
- ___

Announcements and reminders

- Nov. 22: Review Lin & Snyder, Chapter 5, Scalable Parallelism (the Bitonic Sort example).
 Start reading Lin & Snyder Chapter 6: Programming with Threads
- Nov. 24: Finish reading Lin & Snyder Chapter 6.

Review

- Why don't traditional, sequential sorting algorithms parallelize well?
- Try to parallelize another sequential sorting algorithm such as heap sort? What issues do you encounter?
- We proved that 0-1 principle for sorting networks. Show that the 0-1 principle does **not** apply to arbitary programs. In particular, show a simple program (sequential is fine) that sorts all inputs of 0's and 1's correctly, but does not sort arbitary inputs correctly.