POSIX Threads

Mark Greenstreet

CpSc 418 — Nov. 13, 2012

Mark Greenstreet POSIX Threads

Lecture Outline

POSIX Threads

@ Count 3’s
» Creating threads
» Joining threads

@ Communication between Threads
» Shared Memory
» Locks
» Signals

@ Correctness of shared memory programs

» Bad stuff: Races, deadlock, livelock
» Good stuff: Invariants

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 2/24

POSIX Threads

@ POSIX threads: a library for writing parallel programs in C for
shared-memory, multiprocessors (under Unix).

@ Provides functions for thread creation and termination.
@ Provides functions for locking (mutual exclusion).
@ Provides functions for signaling between threads.

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 3/24

Count 3’s: Design

@ Given A an array of nintegers.

@ Let t be the intended number of worker threads.
@ Create t threads
» Each thread counts the number of 3’s in a sub-array of roughly n/t
elements.
» Each thread writes its count into a separate element of a results
array and then terminates.
@ The main thread waits for each worker thread to terminate and
adds up their values to get the total number of 3’s in A.

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 4/24

Creating a POSIX thread

pthread_create(threadld, threadAttr, thread_fn, thread_arg)

@ threadld: a pointer to a pthread t, a thread identifier;

@ threadAttr: attributes for the thread — set it to NULL to get the
defaults;

@ threadFn: call this function to start execution of the thread;

@ threadArg: the parameter to pass to threadFn.
@ Corresponds to Erlang spawn(Fun, ArgList):
pthread_thread_create corresponds to spawn.
» thread_fn corresponds to Fun.
thread_arg corresponds to ArgList.
threadld corresponds to the return value of spawn.
* Why?
* Because this is C:
no explicit exceptions
return value used to report errors

v

vy

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 5/24

A thread for counting 3’s

typedef struct {

int %a, lo, hi; // count 3’s for a[lo..(hi-1)]
int xcount; // put the local count here
} c3s.arg;

// ¢3s_thread: count the number of threes in a[lo..(hi-1)]
void xc3s_thread(void xvoid.arg) {

c3s_.arg xarg = (c3s.arg *) (void.arqg);
int xa = arg->a; // copy arg’s fields to local variables
int lo = arg->lo;
int hi = arg->hi;
int count = 0;
for(int 1 = lo; i < hi; i++) // count
count += al[i] == 3;
* (arg->count) = count; // save our result
return (NULL) ; // that’s it

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012

6/24

Creating Threads: Example

// allocate arrays for thread IDs and per-thread counts

pthread t xthreadId = (pthread.t *) (malloc(txsizeof (pthre

int *counts =
int oldHi = 0;

// start threads: give each n/t values of a to work on
for(int i = 0; i < t; i++) {

(int *) (malloc (t*sizeof (int)));

c3s_.arg xarg = (c3s_.arg x) (malloc(sizeof (c3s.arg)));
arg->a = a; arg->lo = oldHi;

arg->hi = (((long long int) (n)) = (i+1))/t;
arg->count = & (counts[i]);

if (pthread._create (&threadId[i], NULL,

perror ("count 3’'s: ");
exit (-1);

}

oldHi = arg->hi;

Mark Greenstreet POSIX Threads

c3s_thread,

CpSc 418 — Nov. 13, 2012

arqg)

7124

Reaping Threads

@ pthread_join(threadld, void **status)
» threadld: a pointer to a pthread_t.
Thread join waits until the thread corresponding to threadld exits.
» status: The exiting thread can pass a pointer back to it's parent with
this. If status == NULL, then the exit value is ignored.
@ pthread_exit(void *status)

» or, the thread’s top-level function can return —
What'’s *status then?

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 8/24

Reaping Threads: Example

// wait for all threads to finish
for(int 1 = 0; 1 < t; i++) {

if (pthread_join (threadId[i], NULL) != 0) {
perror ("count 3’'s: ");
exit (-2);

}

n3s += counts[i];

}

return (n3s) ;

Mark Greenstreet POSIX Threads

Count 3’s: runtime

3

Count 3’s execution times

25

0.5

Niagra T2
Core 2 Duo
= Dual Quad-Core Xeon

e T —

CPU

T
30

? n
40 50 60 70 80 90 100
threads

cores min. time

SUN Niagra T2

8 cores 0.0601 (64 threads)

Intel Core 2 Duo 2 cores 0.2195s (47 threads)

Intel Xeon

Mark Greenstreet

8 cores 0.0315s (23 threads)

POSIX Threads CpSc 418 — Nov. 13, 2012

10/24

Communication and Synchronization

@ Shared Memory

@ Mutexes

@ Condition Variables
@ Barriers

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 11/24

Pthreads provides a higher-level API

@ Threads communicate using shared memory.

@ Mutual exclusion objects, condition variables, and barriers provide
synchronization between threads.

@ Pthreads functions also perform the necessary memory fences to
make sure that the data is consistent between threads.

» For changes by thread 1 to be guaranteed to be visible to thread 2:
both threads must perform a pthreads synchronization action
between the writes by thread 1 and the reads by thread 2.

@ In other words:

» All pthreads synchronization operations are ordered according to
their logical dependencies:

» Within a thread, the thread’s actions and its pthreads calls are
ordered as expected.

» Example:

* |f thread 1 unlocks a mutex that then allows thread 2 to continue
execution,

* Then all operations performed by thread 1 before the unlock are
visible to operations performed by thread 2 after it acquires the lock.

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 12/24

Producer-Consumer

@ Problem statement:

» The producer generates a sequence of data values: vq, vo,

» The consumer reads this sequence from the producer.

» If the consumer is ready to read a value and none is available from
the producer, then the consumer stalls until the a data value is
available.

» Likewise, we can implement this interface with a fixed-capacity
buffer.

* In this case, if the producer generates a value and there is no empty
space available in the buffer, the producer stalls until the value can be
written to the buffer.

@ We’'ll look at an implementation using a shared, fixed-sized array
as a buffer.

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 13/24

Producer-Consumer: try 1

Value buffer[n]; // shared buffer
int wptr, rptr; // indices for current write and read positions

int next (int i) { // cyclic successor of i
return((i+l) % n);
}

void put (Value v) { // called by producer
if (next (wptr) != rptr) {
buffer[wptr] = v;
wptr = next (wptr);
} else 2727

}

Value take() { // called by consumer
if (rptr !'= wptr) {
Value v = buffer|[rptr];
rptr = next (rptr);
return (v) ;
} else 2727

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 14/24

Producer-Consumer: try 2

void put (Value v) { // called by producer
while (next (wptr) == rptr); // waitfor empty space
buffer[wptr] = v;
wptr = next (wptr);

}

Value take() { // called by consumer
while (rptr == wptr); // wait for data to arrive
Value v = buffer|[rptr];
rptr = next (rptr);
return(v) ;

}

What’s wrong with this solution?

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 15/24

Condition Variables (try cond-1)

@ wait (cond) ; this thread waits until a signal is sent to cond.
@ signal (cond) ; this thread sends a signal to cond.

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 16/24

Producer-Consumer: try 3

Cond w.cond, r_cond; // condition variables

void put (Value v) { // called by producer
int oldwptr = wptr;
if (next (wptr) == rptr)
wait (w_cond) ;
buffer[wptr] = v;
wptr = next (wptr);
if (oldwptr == rptr)
signal (r_cond) ;

}

Value take() { // called by consumer

int oldrptr = rptr;

if (rptr == wptr)
wait (r_cond) ;

Value v = buffer[rptr];

rptr = next (rptr);

if (next (wptr) == oldrptr)
signal (w_cond) ;

return (v) ;

}

Mark Greenstreet POSIX Threads

Mutex Variables

@ lock (mutex) ; this thread acquires a lock on mutex.
» Only one thread can have the lock at a time.
» If a thread ¢, attempts to lock a mutex that thread 6, has already
locked, then thread 6; will block.
@ unlock (mutex) ; this thread releases its lock on mutex.
» If one or more threads are blocked trying to lock the mutex, then
one of them will acquire the lock.
» If multiple threads are waiting for the mutex, an arbitrary one gets it.
» There is no promise or intent of first-come-first-served awarding of
the mutex to waiting threads.

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 18/24

Producer-Consumer: try 4

Mutex m; // amutex variable
void put (Value v) { // called by producer
int oldwptr = wptr;

lock (m) ;

if (next (wptr) == rptr)
wait (w_cond) ;

buffer[wptr] = v;

wptr = next (wptr);

if (oldwptr == rptr)

signal (r_cond) ;
unlock (m) ;

}

Value take() { // called by consumer

int oldrptr = rptr;

lock (m) ;

if (rptr == wptr)
wait (r_cond) ;

Value v = buffer[rptr];

rptr = next (rptr);

if (next (wptr) == oldrptr)
signal (w_cond) ;

unlock (m) ;

return (v);

Mark Greenstreet POSIX Threads

Condition variables and mutexes

@ We need a mutex with each condition variable
» Otherwise, we can’t safely check the wait condition.
@ If the thread needs to wait, then the mutex needs to be unlocked
after the thread is waiting for the signal.
» But, if the thread is waiting for a signal, then it'’s blocked,
» ...and it can’t do anything.
» In particular, it can’t unlock the mutex.
@ Solution: the wait function handles the mutex lock:

» When the thread is suspended, wait unlocks the mutex.
» When the thread is resumed, wait relocks the mutex.

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 20/24

Producer-Consumer: final solution

void put (Value v) { // called by producer
int oldwptr = wptr;
lock (m) ;
if (next (wptr) == rptr)
wait (w_cond, m);
buffer[wptr]
wptr = next (wptr);

= v;

if (oldwptr == rptr)
signal (r_cond) ;
unlock (m) ;

}

Value take() { // called by consumer

int oldrptr = rptr;

lock (m) ;

if(rptr == wptr)
wait (r_-cond, m);

Value v = buffer[rptr];

rptr = next (rptr);

if (next (wptr) == oldrptr)
signal (w-cond) ;

unlock (m) ;

return (v) ;

}

We could unlock the mutex while updating buffer, rptr, and wptr. Should we?

Mark Greenstreet POSIX Threads

CpSc 418 — Nov. 13, 2012

21/24

Mutexes

The mutex type: pthread mutex_t

@ declare and initialize a mutex:

pthread mutex_t my mutex;

pthread mutex_init (&my_mutex, NULL) ;
@ using a mutex:

» pthreadmutex_lock (&my_mutex) ;
» pthread mutex_unlock (&my_mutex) ;
» pthreadmutex_trylock (&my mutex) ;
» pthreadmutex_destroy (&my_mutex)

@ usage:

» Typically, a mutex is associated with a shared data structure.
» A thread acquires the mutex before accessing the data structure.

4

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 22/24

Condition Variables

The condition variable type: pthread_cond_t
@ declare and initialize a condition variable:
pthread_cond_t my_cond;
pthread_cond_init (&my_cond, NULL) ;
@ using a condition:

» pthread.cond.wait (&my_cond) ;

» pthread_cond_signal (&my_cond) ;

» pthread_-cond-broadcast (&my-cond) ;
» pthread_.cond_destroy (&my_cond) ;

@ condition variables and locks:

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 23/24

For more information

@ POSIX threads

» Lin & Snyder, chapter 6.

» https://computing.linl.gov/tutorials/pthreads
@ Upcoming Lectures

» Nov. 15: Bitonic Sorting (part 1)
» Nov. 20: Bitonic Sorting (part 2)
» Nov. 22-29: GPUs, examples of parallel programs

Mark Greenstreet POSIX Threads CpSc 418 — Nov. 13, 2012 24 /24

