Dynamic Programming and MPI

Mark Greenstreet

CpSc 418 — Oct. 30, 2012

Mark Greenstreet Dynamic Programming and MPI

Lecture Outline

@ Dynamic Programming

» The editing distance problem.
» Computing editing distance with dynamic programming.
» Parallel Implementation

@ Implementing Dynamic Programming in MPI

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 2/23

Genome Comparison

@ Poodles and German Shepherds both descended from wolves?

@ Which is the closer descendant?

@ Let P, G and W be the genomes (strings) for a poodle, a german
shepherd, and a wolf.
» Compute a “distance” from W to P and from W to G.
» How?
» Consider editing operations to transform W to P (or vice-versa):

* insert a character, ¢y into the W string;

* delete a character, ¢, from the W string;

* replace a character, cs, in the W string with a new character, cs.
Assign a cost to each of these operations according to how likely
the mutation is.

Find the minimum cost sequence of edits that transforms W to P.
The cost of this sequence of edits is the editing distance between
W and P, edist(W, P).

v

v

v

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 3/23

Example

What is the editing distance between "hello world" and
"hew gold"?

@ Exploring all possible sequences of edits would be very expensive
(i.e. exponential cost).
@ Key idea: what if we knew the optimal editing sequences for
» "hello world" — "hew gol",

» "hello worl" — "hew gold", and
» "hello worl" — "hew gol",

then, edist("hello world", "hew gold") would be

min(edist("hello world", "hew gol") + cost(insert’d’),
edist ("hello worl", "hew gold") + cost(delete’ d’),
edist ("hello worl", "hew gol") +0

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 4/23

Building a cost tableau

@ Let prefix(n, s) be the first n characters of string s.

@ We'll construct an array, cost [i, j] with
cost[i, j] = edist(prefix(i, "hello world"), prefix(j,
"hew gold")).
@ Let
> Pins = Pges = cost of inserting or deleting a character.
» pp = of replacing a character.

@ When i and 5 are both greater than 1:
cost[i, 3] = min(costl[i-1, 3] + Pder

cost[i,3-1] + Pins,
cost[i-1,3-1] + Prp

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012

5/23

Getting Started

@ cost [0, 0] = 0: the empty-string matches the empty-string.
@ cost[1,0] =1 % Pger:
» We can’t quite use the rule from the previous slide, because we
don’t have cost [i,-1] or cost [1i-1, j-11.
» cost[1i, 0] isthe editing distance from a string with i characters
to the empty string.
» The only way to transform a string with i characters to the empty
string is to delete all the characters.
> .cost[i,0] = 1% Pge-
@ cost [0, J] = J* Pjns:
In this case, we’re inserting 5 characters to transform the empty
string into a string with j characters.

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 6/23

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

’h/ ’e’ /w’ 14 ’

3=0|3=1|3=2|3=8|3=4
i=0
'h', i=1
rer, i=2
r1r, i=3
17, 1i=4
o', i=5

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

’h/ ’e’ /w’ 14 ’
3=0|3=1|3=2|3=8|3=4
i=0 0
'h', i=1
rer, i=2
r1r, i=3
17, 1i=4
o', i=5

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

’h/ ’e’ /w’ 14 ’
3=0|3=1|3=2|3=8|3=4
i=0 0 2
'h', i=1
rer, i=2
r1r, i=3
17, 1i=4
o', i=5

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

’h/ ’e’ /w’ 14 ’
3=0|3=1|3=2|3=8|3=4
i=0 0 2 4

'h', i=1
rer, i=2
r1r, i=3
17, 1i=4
o', i=5

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

’hl ’e’ ’w’ 14 ’

3=0|3=1|3=2|35=8|3=4

i=0 0 2 4 6 8
'h', i=1
re’, i=2
r17, 1i=3
17, 1i=4
o', i=5

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 7/23

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

’hl ’e’ ’w’ 14 ’
3=0|3=1|3=2|35=8|3=4
i=0 0 2 4 6 8
'h', i=1 2
re’, i=2
r17, 1i=3
r1r, 1i=4
o', 1=5

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 7/23

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

’h’ ’e’ ’w’ 14 ’

j=0]3=1|3=2]3=3|3=4

i=0 0 2 4 6 8
'h', i=1 2
re’, i=2 4
r1r, i=3 6
r1r, i=4 8
o', i=5 10

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 7/23

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

Ihl Iel le 14 14

j=0|3=1]3=2|j=3| =4

i=0 0 2 4 6 8

"h', 1 =1 2 0

re’, i=2 4
r1r, 1=3 6
17, i=4 8
o', 1=5 10

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 7/23

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

Ihl Iel le 14 ’
j=0|j=1]3=2|j=3|j=4
i=o0| o0 2 4 6 8
"h', 1 =1 2 0 2
re’, i=2 4
r1r, i=3 6
r1r, 1i=4 8
o', 1=5 10

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 7/23

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

Ihl Iel le 14 ’
j=0|j=1]3=2|j=3|j=4
i=o0| o0 2 4 6 8
"h', 1 =1 2 0 2 4 6
re’, i=2 4
r1r, i=3 6
r1r, 1i=4 8
o', 1=5 10

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 7/23

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

’h’ ’e’ ’w’ 14 ’

j=0]3=1|3=2]3=3|3=4

i=0 0 2 4 6 8

'h’, i=1 2 0 2 4 6

re’, i=2 4 2

r1r, i=3 6
r1r, i=4 8
o', i=5 10

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 7/23

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

"hY rar "’ ror
j=0]3=1]3=2]3=3]j=4
i=0 0 2 4 6 8
'h', i=1 2 0 2 4 6
re’, 1=2 4 2 0
r1r, 1i=3 6
r1r, i=4 8
o', 1i=5 10

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 7/23

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

Ihl Iel le 4 ’
i=0 0 2 4 6 8

'h', i=1 2 0 2 4 6

re’, 1=2 4 2 0 2 4

r1r, 1i=3 6

r1r, i=4 8

o', 1i=5 10

first overlay final tableau

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

Ihl Iel le 4 ’
i=0 0 2 4 6 8

'h', i=1 2 0 2 4 6

'e’, 1=2 4 2 0 2 4

r1r, 1i=3 6 4

r1r, i=4 8

o', 1i=5 10

first overlay final tableau

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

Ihl Iel le 14 ’
i=0 0 2 4 6 8

'h', i=1 2 0 2 4 6

re’, 1=2 4 2 0 2 4

r1r, 1i=3 6 4 2

r1r, i=4 8

o', 1i=5 10

first overlay final tableau

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

Ihl Iel le 14 ’
i=0 0 2 4 6 8

"h', i=1 2 0 2 4 6

rer, i=2 4 2 0 2 4

r1r, i=38 6 4 2 3

r1r, i=4 8

o', i=5 10

first overlay final tableau

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

Ihl Iel le 4 14
i=0 0 2 4 6 8

'h', i=1 2 0 2 4 6

'e’, 1=2 4 2 0 2 4

r1r, 1i=3 6 4 2 3 5

r1r, i=4 8

o', 1i=5 10

first overlay final tableau

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

m [e [w7
J=0]3=1]3=2]3=38|3=4
i=0 0 2 4 6 8
'h', i=1 2 0 2 4 6
e, i=2 4 2 0 2 4
17, 1=3 6 4 2 3 5
17, 1i=4 8 6 4 5 6
o', 1i=5 10

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 7/23

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

m [e [w7
J=0]3=1]3=2]3=38|3=4

i=0 0 2 4 6 8
'h', i=1 2 0 2 4 6
e, i=2 4 2 0 2 4
17, 1=3 6 4 2 3 5
17, 1i=4 8 6 4 5 6
o', 1i=5 10 8 6 7 8

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 7/23

Let’'s do it

@ Assume Pins = Pdel = 2, Prpi = 3
@ The tableau:

m [e [w7
J=0]3=1]3=2]3=38|3=4

i=0 0 2 4 6 8
'h', i=1 2 0 2 4 6
e, i=2 4 2 0 2 4
17, 1=3 6 4 2 3 5
17, 1i=4 8 6 4 5 6
o', 1i=5 10 8 6 7 8

first overlay final tableau

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 7/23

The final tableau

"h” | e’ | "Tw’ ! g’ | o | "1 | "d’

0 2 4 6 8 10 12| 14| 16

"h’ 2 0 2 4 6 8 10 12 14
re’ 4 2 0 2 4 6 8| 10 12
r1’ 6 4 2 3 5 7 9 8 10
"1’ 8 6 4 5 6 8 10 9 11
"o’ || 10 8 6 7 8 9 8| 10 12
ror 121 10 8 9 7 9 10 11 13
w14 12 10 8 9 10 12| 13 14
"o |16 | 14| 12 10| 11 12 10 12 14
'r’ 118 16| 14| 12| 13 14 12 13 15
17|20 18| 16 14| 15 16 14| 12 14
rdr 22| 20 18 16| 17| 18 16| 14| 12

Mark Greenstreet Dynamic Programming and MPI

CpSc 418 — Oct. 30, 2012

8/23

Observations

@ We can compute the editing distance between two strings of
length N in O(N?) sequential time.
» A single tableau entry can be computed in O(1) time.
» There are O(N?) tableau entries.
@ The algorithm can also provide a sequence of editing operation
that achieves the minimum cost.
» After computing the tableau, work backwards from the lower-right
corner to the upper left.
» This takes O(N) additional time.
» Warning: it also requires O(N?) storage.
* This may be impractical for larger problems.

» We can do better, but that’s not the topic of this course. @)

@ If we don’t need the sequence of editing operations, O(N) space
is sufficient.
» Only need to store row i — 1 until we're done computing row /.

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 9/23

Implementing the code

Code sketch:
int edist (char *top, char xleft, Penalty =p) {

for each row i { // each char of top
for each column j{ // each char of left
compute entry tableauli, 7] based on entries
tableau[i-1, j-1],tableaul[i-1, j],and tableauli, j-1].
}
}
return(tableau(nrow-1, ncols-1));

}

Warning: storing the entire t ableau array would require O(N?) space (as
noted on slide 9).

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 10/23

O(N) Storage

@ Use an array, cost [0.. (N-1)]. Initially, cost [§] = 2+7.

@ The “for 3”loop from slide 10 will maintain cost such that when the
loop condition is tested:

» All elements of cost with indices less than § have values for the current row
(i.e. row 1i).

> All elements of cost with indices greater than or equal to j have values for
the previous row (i.e. row i-1).

@ One tricky point: computing cost [3] (i.e. tableauli,j]) requires the value
of tableauli-1,j-1], but we’ve already set cost [§-1] to the value of
tableauli,j-1].

» Solution. Use local variables cost_n and cost_nw:
* cost_n is the cost of the tableau entry to the “north” of the entry
currently being computed; i.e., cost_.n = tableaufi-1,j].
* cost_nw is the cost of the tableau entry to the “northwest” of the
entry currently being computed;i.e., cost_nw = tableaufi-1,j-1].
» At the beginning of the body of the for 5 loop:
* Set cost_nwto cost_n.
* Set cost.ntocost[]].
Note that cost [5] hasn’t been updated yet; so it still has the value
of tableaufi-1,j].

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 11/23

Editting Distance In C

int edist (char xtop, char xleft, Penalty =*p) {
int ncols = strlen(top);

strlen(left);

(int *)malloc (ncols*sizeof (int));

0; j < ncols; j++)

int nrows
int =xcost
for (int Jj

cost[j] = 2x(3j+1); // initialize cost
for(int i = 0; i < nrows; i++) { // each tableau row
int cost.n = 2xi;

int costw = 2% (i+1);
for(int j = 0; Jj < ncols; j++) { // each tableau column
int cost.nw = cost.n;
costn = cost[J];
cost[j] = min(
cost.nw + ((topl[jl==left[i]) ? 0 : p->replace),
min (cost.n, cost.w) + p->insdel);
cost.w = cost[]j];
} } return(cost[ncols-1]);

Code at: simple_edist.c

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 12/23

http://www.ugrad.cs.ubc.ca/~cs448b/2011-1/lecture/11.03/simple_edist.c

Do it in parallel

@ Find the parallelism
@ Find the overhead

» Commnication
» Idle processis

@ Implement the code (in MPI)
@ Measure the performance

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 13/23

Dependencies

-)

(e}
[
[\)
w
N
()]
o)
F‘\]

—
—
—
—

-
-
-
-
-
-

- s >)

F
[
[
\
i
<|7v<

-
-
-
-
-
-

- - - -)

\J
L
\j

F
-
-
.
-

A2 207204l

O
1]
2 A
3 I >‘4>IA>LA>LA>IA>IA>V
4 v >IA>IH>IA>IA>IA>‘A>I
5 IA>IH>IH>IA>IA>‘4>IA>
6 IAVIA>IA>IH>IA>IA> 4»1
7 YRV ov oY ov v vy

A tableau element can be updated when the values for its incoming arrows
are available.

@ |Initially, tableau[0,0] can be computed.
@ Second, tableau[0,1] and tableau[1,0] can be computed in parallel.

@ Third, tableau[0,2], tableau[1,1], and tableau[2,0] can be computed in
parallel.

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 14/23

First Parallel Version

In Peril-L (see Oct. 25 slides)

for i in 0..(2N-1) {
forall j in 0..1 {
update tableaul],i-j;

}

}

@ Each element update involves six communication actions:

» Receive values from N, W, and NW neighbours.
» Send values to S, E, and SE neighbours.

@ Communication cost will dominate computation.

@ This is an example of “unlimitted” parallelism leading to an
inefficient algorithm.

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 15/23

http://www.ugrad.cs.ubc.ca/~cs448b/2011-1/lecture/10-25.pdf

Partition Work into Blocks

Divide the tableau into B x B blocks.
@ Computing the tableau entries for a B x B block requires
» O(B?) computation
» 4 communications — the “diagonal” values just involve appending
one more element to each vector sent.
» Each communication operation transfers B + 1 values.
@ Simple approach: compute editing distance between two strings
of length N using P processors.
» Divide tableau into P? blocks, each of size (N/P) x (N/P).
» Each processor is responsible for one column.

* The processor computes the tableau for the block from top-to-bottom.

* To work on a block, processors 1... P — 1 must first receive the
cost-vector from the processor on its left.

* When a processor finishes a block, it sends the cost vector for its right
eedge to the processor on its right.

» Each communication operation transfers B values.

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 16/23

Second Parallel Version

for d in 0..(2P-2) { // eachof the 2P — 1 diagonals
forall b in 0..max(d+1l, 2P-(d+1)){ // eachblock along
for i in 0..((N/P)-1) { // the diagonal
for j2 in 0..((N/P)-1) {
update tableau[(N/P)*(d-b) + i2, (N/P)*b + j2]
Py

@ This algorithm suffers from idle processors.
» Initially, only one processor is active.
» After the first procesor finishes its first block, two procesors are
active.
» All processors are active only when computing the blocks on the
anti-diagonal.
» So, we'd expect a maximum speed-up of about P/2.
@ l'llimplement and analyse this version anyway, and leave the
improvements for a homework problem.

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 17/23

Performance (1/2)

A s
Broc; The critical
s C $Procy path >
D Procg
¢ Cg Procy »
D Procg
¢ Cg Procg
D Procz
¢ Cg >
D
¢ Cg
D
>
¢ Cg
¢ D
As drawn on slide 14.
¥“\L D
|
th E >
L—L B
jL
|
[

@ The pieces of the critical path:

A is the initial computation of the upper left
box of the tableau by processor Procy.

B is the time for processor Proco to send a
message (the cost vector for the right edge
of the tableau block it just evaluated) to
processor Procy.

C is the time for a processor to receive a
message, compute a block, send a
message. The critical path continues on the
same processor.

D is the time for a processor to receive a a
message, compute a block, and send a
message. The critical path continues on the
next processor to the right.

E is the time for the rightmost processor to
receive a message and update the final
block to obtain the final cost.

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012

18/23

Performance (2/2)
The total time:

@ At each of the steps, a processor computes the tableau entries for a
(N/P) x (N/P) block. There are 2P — 1 such steps, for a total compute
time of typaate(2P — 1)N?/P? where typaae is the time to compute a single
update of the tableau.

@ At every step except for the last one, the processor sends a message to
its successor. Likewise, at every step except for the first one, the
processor receives a message from its predecessor. The total
communication time is: 2(tseng(N/P) + trecv(N/P))(P — 1), where
tsena(N/P) is the time to send a message of N/P cost values, and
trecv (N/ P) is the time to receive such a message.

@ Assume that the time to send and receive a message with N/P
elements is fy + t;(N/P), then the total time for the algorithm is:

2P — 1)N? N
tupdate% +2 (tO + Pt1> (Pf 1)

For N > P > 1, this is approximately 2tupda,eN2/P, which means we
expect a speed-up of roughly half the number of processors.

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 19/23

Let's try it

250

TP @ | implemented the algorithm
200 E§ described above using MPI and
R ran it using the 1in01...
- L boe lin25.ugrad.cs.ubc.ca
1007+ P=19 machines.

50 @ Fitting the parameters of the
model from the previous slide to

N 10t the measured run-times yields:

t = (4.85 107°+7.82-10*p+1.77 - 10 %X (P - 1) +2.30 - 10*8f,’§(2pf 1))

@ This yields: fypgate =~ 23ns, fp ~ 0.39ms, and #; ~ 0.87 s.

» The constant term, 4.85ms didn’t appear in the model on the
previous slide. | included it to account for the fixed overheads in the
algorithm, which apparently are fairly large.

» The other terms are (surprisingly) reasonable ©.

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 20/23

Full Disclosure

@ To fit the model to the data, | discarded the data from the P = 1
case.

» Visually, it was an outlier (too slow!).
» My main focus is the parallel case anyway.

@ Note that the fpqate is dominant for large values of N, but the other
parameters matter for small values of N.

» For example, | don’t want the “best-fit” for large N to produce a
model that predicts negative run-times for small N.
» So,
* | did a least-squares (minimize the square of the absolute error) first
to obtain an estimate of the parameters.
* | fixed fypgate to the value from that fit and re-fit the other parameters to
minimize the square of the relative error.
* | fixed the non t,yqae parameters and did one more least-sqares fit for
tupdate 10 Minimize the square of the absolute error.

Mark Greenstreet Dynamic Programming and MPI CpSc 418 — Oct. 30, 2012 21/23

Announcements and reminders

Mark Greenstreet Dynamic Programming and MPI

Review

I'll add somthing for this.

Mark Greenstreet Dynamic Programming and MPI

