Dynamic Programming and MPI

Mark Greenstreet

CpSc 418 - Oct. 30, 2012

Lecture Outline

- Dynamic Programming
- The editing distance problem.
- Computing editing distance with dynamic programming.
- Parallel Implementation
- Implementing Dynamic Programming in MPI

Genome Comparison

- Poodles and German Shepherds both descended from wolves?
- Which is the closer descendant?
- Let P, G and W be the genomes (strings) for a poodle, a german shepherd, and a wolf.
- Compute a "distance" from W to P and from W to G.
- How?
- Consider editing operations to transform W to P (or vice-versa):
\star insert a character, c_{1} into the W string;
\star delete a character, c_{2} from the W string;
\star replace a character, c_{3}, in the W string with a new character, c_{4}.
- Assign a cost to each of these operations according to how likely the mutation is.
- Find the minimum cost sequence of edits that transforms W to P.
- The cost of this sequence of edits is the editing distance between W and $P, \operatorname{edist}(W, P)$.

Example

What is the editing distance between "hello world" and "hew gold"?

- Exploring all possible sequences of edits would be very expensive (i.e. exponential cost).
- Key idea: what if we knew the optimal editing sequences for
- "hello world" \rightarrow "hew gol",
- "hello worl" \rightarrow "hew gold", and
- "hello worl" \rightarrow "hew gol",
then, edist("hello world", "hew gold") would be

```
min( edist("hello world", "hew gol") + cost(insert' d'),
    edist("hello worl", "hew gold") + cost(delete' d'),
    edist("hello worl", "hew gol") +0
)
```


Building a cost tableau

- Let prefix (n, s) be the first n characters of string s.
- We'll construct an array, cost [i,j] with
cost[i,j] = edist(prefix(i, "hello world"), prefix(j,
"hew gold")).
- Let
- $p_{\text {ins }}=p_{\text {del }}=$ cost of inserting or deleting a character.
- $p_{r p l}=$ of replacing a character.
- When i and j are both greater than 1 :

$$
\begin{aligned}
& \operatorname{cost}[i, j]=\min (\operatorname{cost}[i-1, j]+p_{d e l}, \\
& \operatorname{cost}[i, j-1]+p_{i n s} \\
& \operatorname{cost}[i-1, j-1]+p_{r p l} \\
&) .
\end{aligned}
$$

Getting Started

- cost $[0,0]=0$: the empty-string matches the empty-string.
- cost $[i, 0]=i * p_{d e l}$:
- We can't quite use the rule from the previous slide, because we don't have cost [i,-1] or cost [i-1,j-1].
- cost $[i, 0]$ is the editing distance from a string with i characters to the empty string.
- The only way to transform a string with i characters to the empty string is to delete all the characters.
\therefore. cost $[i, 0]=i * p_{\text {del }}$.
- cost $[0, j]=j * p_{i n s}$:

In this case, we're inserting j characters to transform the empty string into a string with j characters.

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & { }^{\prime} \mathrm{h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & { }^{\prime} \mathrm{e}^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & { }^{\prime} \mathrm{w}^{\prime} \\ & \mathrm{j}=3 \end{aligned}$	$j=4$	
$i=0$						
'h', i = 1						
'e', i=2						
'1', i=3						
'1', i = 4						
'o', i=5						
\vdots						

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime h^{\prime} \\ & j=1 \end{aligned}$	$\begin{gathered} \prime^{\prime} e^{\prime} \\ j=2 \end{gathered}$	$\begin{gathered} \prime w^{\prime} \\ j=3 \end{gathered}$	$j=4$	$\begin{aligned} & \hline \cdots \\ & \ldots \\ & \hline \end{aligned}$
$i=0$	0					
'h', i=1						
'e', i=2						
'1', i=3						
'1', i = 4						
'o', i=5						
\vdots						

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime h^{\prime} \\ & j=1 \end{aligned}$	$\begin{gathered} \prime^{\prime} e^{\prime} \\ j=2 \end{gathered}$	$\begin{gathered} \prime w^{\prime} \\ j=3 \end{gathered}$	$j=4$	$\begin{aligned} & \hline \cdots \\ & \ldots \\ & \hline \end{aligned}$
$i=0$	0	2				
'h', i=1						
'e', i=2						
'1', i=3						
'1', i = 4						
'o', i=5						
\vdots						

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime h^{\prime} \\ & j=1 \end{aligned}$	$\begin{gathered} \prime e^{\prime} \\ j=2 \end{gathered}$	$\begin{gathered} \prime w^{\prime} \\ j=3 \end{gathered}$	$j=4$	$\begin{aligned} & \hline \cdots \\ & \ldots \\ & \hline \end{aligned}$
$i=0$	0	2	4			
'h', i=1						
'e', i=2						
'1', i=3						
'1', i = 4						
'o', i=5						
\vdots						

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime h^{\prime} \\ & j=1 \end{aligned}$	$\begin{gathered} \prime e^{\prime} \\ j=2 \end{gathered}$	$\begin{gathered} \prime w^{\prime} \\ j=3 \end{gathered}$	$j=4$	$\begin{aligned} & \hline \cdots \\ & \ldots \\ & \hline \end{aligned}$
$i=0$	0	2	4	6	8	\cdots
'h', i=1						
'e', i=2						
'1', i=3						
'1', i=4						
'o', i=5						
\vdots						

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime h^{\prime} \\ & j=1 \end{aligned}$	$\begin{gathered} \prime e^{\prime} \\ j=2 \end{gathered}$	$\begin{gathered} \prime w^{\prime} \\ j=3 \end{gathered}$	$j=4$	$\begin{aligned} & \hline \cdots \\ & \ldots \\ & \hline \end{aligned}$
$i=0$	0	2	4	6	8	\cdots
'h', i=1	2					
'e', i=2						
'1', i=3						
'1', i=4						
'o', i=5						
!						

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & { }^{\prime} \mathrm{h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & { }^{\prime} \mathrm{e}^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & \prime w^{\prime} \\ & j=3 \end{aligned}$	$j=4$	
$i=0$	0	2	4	6	8	\cdots
'h', i=1	2					
'e', i=2	4					
'1', i = 3	6					
'1', i=4	8					
'o', i=5	10					
\vdots	!					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & { }^{\prime} \mathrm{h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & { }^{\prime} \mathrm{e}^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & \prime w^{\prime} \\ & j=3 \end{aligned}$	$j=4$	
$i=0$	0	2	4	6	8	\cdots
'h', i=1	2	0				
'e', i=2	4					
'1', i = 3	6					
'1', i=4	8					
'o', i=5	10					
\vdots	!					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime \mathrm{h} \mathrm{~h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & \prime \mathrm{e}^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & \prime w^{\prime} \\ & j=3 \end{aligned}$	$j=4$	$\begin{aligned} & \hline \cdots \\ & \ldots \\ & \hline \end{aligned}$
$i=0$	0	2	4	6	8	\ldots
'h', i=1	2	0	2			
' ${ }^{\prime}$, ${ }^{\prime}=2$	4					
'1', i=3	6					
'1', i=4	8					
'○', i=5	10					
\vdots	!					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime \mathrm{h} \mathrm{~h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & \prime \mathrm{e}^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & \prime w^{\prime} \\ & j=3 \end{aligned}$	$j=4$	\ldots
$i=0$	0	2	4	6	8	\cdots
'h', i=1	2	0	2	4	6	\cdots
' ${ }^{\prime}$, ${ }^{\prime}=2$	4					
'1', i=3	6					
'1', i=4	8					
'○', i=5	10					
\vdots	!					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime \mathrm{h} \mathrm{~h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & \prime \mathrm{e}^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & \prime w^{\prime} \\ & j=3 \end{aligned}$	$j=4$	\ldots
$i=0$	0	2	4	6	8	\cdots
'h', i=1	2	0	2	4	6	\cdots
' ${ }^{\prime}$, ${ }^{\prime}=2$	4	2				
'1', i $=3$	6					
'1', i=4	8					
'○', i=5	10					
\vdots	!					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime \mathrm{h} \mathrm{~h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & \prime \mathrm{e}^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & \prime w^{\prime} \\ & j=3 \end{aligned}$	$j=4$	\ldots
$i=0$	0	2	4	6	8	\cdots
'h', i=1	2	0	2	4	6	\cdots
' ${ }^{\prime}$, ${ }^{\prime}=2$	4	2	0			
'1', i $=3$	6					
'1', i=4	8					
'○', i=5	10					
\vdots	!					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime \mathrm{h} \mathrm{~h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & \prime \mathrm{e}^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & \prime w^{\prime} \\ & j=3 \end{aligned}$	$j=4$	\ldots
$i=0$	0	2	4	6	8	\cdots
'h', i=1	2	0	2	4	6	\cdots
' ${ }^{\prime}$, ${ }^{\prime}=2$	4	2	0	2	4	
'1', i $=3$	6					
'1', i=4	8					
'○', i=5	10					
\vdots	!					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & { }^{\prime} \mathrm{h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & { }^{\prime} \mathrm{e}^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & \prime w^{\prime} \\ & j=3 \end{aligned}$	$j=4$	\ldots
$i=0$	0	2	4	6	8	\cdots
'h', i=1	2	0	2	4	6	\cdots
'e', i=2	4	2	0	2	4	\cdots
'1', i = 3	6	4				
'1', i=4	8					
'o', i=5	10					
\vdots	!					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & { }^{\prime} \mathrm{h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & { }^{\prime} \mathrm{e}^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & \prime w^{\prime} \\ & j=3 \end{aligned}$	$j=4$	\ldots
$i=0$	0	2	4	6	8	\cdots
'h', i=1	2	0	2	4	6	\cdots
'e', i=2	4	2	0	2	4	\cdots
'1', i = 3	6	4	2			
'1', i=4	8					
'o', i=5	10					
:	!					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & { }^{\prime} \mathrm{h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & { }^{\prime} \mathrm{e}^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & \prime w^{\prime} \\ & j=3 \end{aligned}$	$j=4$	\ldots
$i=0$	0	2	4	6	8	\cdots
'h', i=1	2	0	2	4	6	\cdots
'e', i=2	4	2	0	2	4	\cdots
'1', i = 3	6	4	2	3		
'1', i=4	8					
'o', i=5	10					
:	!					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime h^{\prime} \\ & j=1 \end{aligned}$	$\begin{aligned} & { }^{\prime} e^{\prime} \\ & j=2 \end{aligned}$	$\begin{gathered} \prime w^{\prime} \\ j=3 \end{gathered}$	$j=4$	$\begin{aligned} & \hline \cdots \\ & \ldots \\ & \hline \end{aligned}$
$i=0$	0	2	4	6	8	\cdots
'h', i = 1	2	0	2	4	6	\ldots
'e', i=2	4	2	0	2	4	\ldots
${ }^{\prime} 1^{\prime}, \mathrm{i}=3$	6	4	2	3	5	\cdots
'1', i=4	8					
'o', i=5	10					
\vdots	\vdots					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime h^{\prime} \\ & j=1 \end{aligned}$	$\begin{aligned} & { }^{\prime} e^{\prime} \\ & j=2 \end{aligned}$	$\begin{gathered} \prime w^{\prime} \\ j=3 \end{gathered}$	$j=4$	$\begin{aligned} & \hline \cdots \\ & \ldots \\ & \hline \end{aligned}$
$i=0$	0	2	4	6	8	\ldots
'h', i = 1	2	0	2	4	6	\ldots
'e', i=2	4	2	0	2	4	\ldots
${ }^{\prime} 1^{\prime}, \mathrm{i}=3$	6	4	2	3	5	\cdots
'1', i=4	8	6	4	5	6	\ldots
'o', i=5	10					
\vdots	\vdots					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & \prime h^{\prime} \\ & j=1 \end{aligned}$	$\begin{aligned} & { }^{\prime} e^{\prime} \\ & j=2 \end{aligned}$	$\begin{gathered} \prime w^{\prime} \\ j=3 \end{gathered}$	$j=4$	$\begin{aligned} & \cdots \\ & \cdots \\ & \hline \end{aligned}$
$i=0$	0	2	4	6	8	\ldots
'h', i = 1	2	0	2	4	6	\ldots
'e', i=2	4	2	0	2	4	\ldots
${ }^{\prime} 1^{\prime}, \mathrm{i}=3$	6	4	2	3	5	\cdots
'1', i=4	8	6	4	5	6	\cdots
'o', i=5	10	8	6	7	8	\cdots
\vdots	\vdots					

first overlay final tableau

Let's do it

- Assume $p_{i n s}=p_{d e l}=2, p_{r p l}=3$.
- The tableau:

	$j=0$	$\begin{aligned} & { }^{\prime} \mathrm{h}^{\prime} \\ & \mathrm{j}=1 \end{aligned}$	$\begin{aligned} & \prime e^{\prime} \\ & j=2 \end{aligned}$	$\begin{aligned} & \prime w^{\prime} \\ & j=3 \end{aligned}$	$j=4$	\cdots
$i=0$	0	2	4	6	8	\cdots
' ${ }^{\prime}$ ', i=1	2	0	2	4	6	\cdots
'e', i=2	4	2	0	2	4	\cdots
'1', i=3	6	4	2	3	5	\cdots
'1', i=4	8	6	4	5	6	\ldots
'0', i=5	10	8	6	7	8	\cdots
\vdots	!	!	!	!	:	\ddots.

first overlay final tableau

The final tableau

		' h '	' ${ }^{\prime}$ '	' W'		' g'	' ${ }^{\prime}$ '	' 1'	' d'
	0	2	4	6	8	10	12	14	16
' h '	2	0	2	4	6	8	10	12	14
' e^{\prime}	4	2	0	2	4	6	8	10	12
'1'	6	4	2	3	5	7	9	8	10
'1'	8	6	4	5	6	8	10	9	11
' ${ }^{\prime}$ '	10	8	6	7	8	9	8	10	12
	12	10	8	9	7	9	10	11	13
' w^{\prime}	14	12	10	8	9	10	12	13	14
' ${ }^{\prime}$ '	16	14	12	10	11	12	10	12	14
'r'	18	16	14	12	13	14	12	13	15
' 1'	20	18	16	14	15	16	14	12	14
' ${ }^{\prime}$ '	22	20	18	16	17	18	16	14	12

Observations

- We can compute the editing distance between two strings of length N in $O\left(N^{2}\right)$ sequential time.
- A single tableau entry can be computed in $O(1)$ time.
- There are $O\left(N^{2}\right)$ tableau entries.
- The algorithm can also provide a sequence of editing operation that achieves the minimum cost.
- After computing the tableau, work backwards from the lower-right corner to the upper left.
- This takes $O(N)$ additional time.
- Warning: it also requires $O\left(N^{2}\right)$ storage.
\star This may be impractical for larger problems.
- We can do better, but that's not the topic of this course. -
- If we don't need the sequence of editing operations, $O(N)$ space is sufficient.
- Only need to store row $i-1$ until we're done computing row i.

Implementing the code

Code sketch:

```
int edist(char *top, char *left, Penalty *p) {
    for each row i { // each char of top
        for each column j{ // each char of left
            compute entry tableau[i,j] based on entries
            tableau[i-1,j-1], tableau[i-1,j], and tableau[i,j-1].
        }
    }
    return(tableau(nrow-1, ncols-1));
}
```

Warning: storing the entire tableau array would require $O\left(N^{2}\right)$ space (as noted on slide 9).

$O(N)$ Storage

- Use an array, cost [0..(N-1)]. Initially, cost [j] = 2*j.
- The "for j " loop from slide 10 will maintain cost such that when the loop condition is tested:
- All elements of cost with indices less than j have values for the current row (i.e. row i).
- All elements of cost with indices greater than or equal to j have values for the previous row (i.e. row i-1).
- One tricky point: computing cost [j] (i.e. tableau[i,j]) requires the value of tableau[i-1,j-1], but we've already set cost [j-1] to the value of tableau[i,j-1].
- Solution. Use local variables cost_n and cost_nw:
* cost_n is the cost of the tableau entry to the "north" of the entry currently being computed; i.e., cost_n $=$ tableau[i-1,j].
* cost_nw is the cost of the tableau entry to the "northwest" of the entry currently being computed; i.e., cost_nw $=$ tableau[i-1,j-1].
- At the beginning of the body of the for j loop:
* Set cost_nw to cost_n.
* Set cost_n to cost [j].

Note that cost [j] hasn't been updated yet; so it still has the value of tableau[i-1,j].

Editting Distance In C

```
int edist(char *top, char *left, Penalty *p) {
    int ncols = strlen(top);
    int nrows = strlen(left);
    int *cost = (int *)malloc(ncols*sizeof(int));
    for(int j = 0; j < ncols; j++)
        cost[j] = 2*(j+1); // initialize cost
    for(int i = 0; i < nrows; i++) { // each tableau row
        int cost_n = 2*i;
        int cost_w = 2*(i+1);
        for(int j = 0; j < ncols; j++) { // each tableau column
            int cost_nw = cost_n;
            cost_n = cost[j];
            cost[j] = min(
                    cost_nw + ((top[j]==left[i]) ? 0 : p->replace),
            min(cost_n, cost_w) + p->insdel);
        cost_w = cost[j];
    } } return(cost[ncols-1]);
}
```

Code at: simple_edist.c

Do it in parallel

- Find the parallelism
- Find the overhead
- Commnication
- Idle processis
- Implement the code (in MPI)
- Measure the performance

Dependencies

A tableau element can be updated when the values for its incoming arrows are available.

- Initially, tableau[0,0] can be computed.
- Second, tableau[0,1] and tableau[1,0] can be computed in parallel.
- Third, tableau[0,2], tableau[1,1], and tableau[2,0] can be computed in parallel.

First Parallel Version

In Peril-L (see Oct. 25 slides)

```
for i in 0..(2N-1) {
    forall j in 0..i {
        update tableau[j,i-j];
    }
}
```

- Each element update involves six communication actions:
- Receive values from N, W, and NW neighbours.
- Send values to S, E, and SE neighbours.
- Communication cost will dominate computation.
- This is an example of "unlimitted" parallelism leading to an inefficient algorithm.

Partition Work into Blocks

Divide the tableau into $B \times B$ blocks.

- Computing the tableau entries for a $B \times B$ block requires
- $O\left(B^{2}\right)$ computation
- 4 communications - the "diagonal" values just involve appending one more element to each vector sent.
- Each communication operation transfers $B+1$ values.
- Simple approach: compute editing distance between two strings of length N using P processors.
- Divide tableau into P^{2} blocks, each of size $(N / P) \times(N / P)$.
- Each processor is responsible for one column.
\star The processor computes the tableau for the block from top-to-bottom.
\star To work on a block, processors $1 \ldots P-1$ must first receive the cost-vector from the processor on its left.
\star When a processor finishes a block, it sends the cost vector for its right eedge to the processor on its right.
- Each communication operation transfers B values.

Second Parallel Version

```
for d in 0..(2P-2) { // each of the 2P-1 diagonals
    forall b in 0..max (d+1, 2P-(d+1)){ // each block along
        for i in 0..((N/P)-1) { // the diagonal
        for j2 in 0..((N/P)-1) {
            update tableau[(N/P)*(d-b) +i2,(N/P)*b + j2]
```

- This algorithm suffers from idle processors.
- Initially, only one processor is active.
- After the first procesor finishes its first block, two procesors are active.
- All processors are active only when computing the blocks on the anti-diagonal.
- So, we'd expect a maximum speed-up of about $P / 2$.
- I'll implement and analyse this version anyway, and leave the improvements for a homework problem.

Performance (1/2)

- The pieces of the critical path:
- A is the initial computation of the upper left box of the tableau by processor Proc $_{0}$.
- B is the time for processor Proc_{0} to send a message (the cost vector for the right edge of the tableau block it just evaluated) to processor Proc $_{1}$.
- C is the time for a processor to receive a message, compute a block, send a message. The critical path continues on the same processor.
- D is the time for a processor to receive a a message, compute a block, and send a message. The critical path continues on the next processor to the right.
- E is the time for the rightmost processor to receive a message and update the final block to obtain the final cost.

Performance (2/2)

The total time:

- At each of the steps, a processor computes the tableau entries for a $(N / P) \times(N / P)$ block. There are $2 P-1$ such steps, for a total compute time of $t_{\text {update }}(2 P-1) N^{2} / P^{2}$ where $t_{\text {update }}$ is the time to compute a single update of the tableau.
- At every step except for the last one, the processor sends a message to its successor. Likewise, at every step except for the first one, the processor receives a message from its predecessor. The total communication time is: $2\left(t_{\text {send }}(N / P)+t_{\text {recv }}(N / P)\right)(P-1)$, where $t_{\text {send }}(N / P)$ is the time to send a message of N / P cost values, and $t_{\text {recv }}(N / P)$ is the time to receive such a message.
- Assume that the time to send and receive a message with N / P elements is $t_{0}+t_{1}(N / P)$, then the total time for the algorithm is:

$$
t_{\text {update }} \frac{(2 P-1) N^{2}}{P^{2}}+2\left(t_{0}+\frac{N}{P} t_{1}\right)(P-1)
$$

For $N \gg P \gg 1$, this is approximately $2 t_{u p d a t e} N^{2} / P$, which means we expect a speed-up of roughly half the number of processors.

Let's try it

$$
t=\left(4.85 \cdot 10^{-3}+7.82 \cdot 10^{-4} p+1.77 \cdot 10^{-6} \frac{N}{P}(P-1)+2.30 \cdot 10^{-8} \frac{N^{2}}{P^{2}}(2 P-1)\right)
$$

- This yields: $t_{\text {update }} \approx 23 \mathrm{~ns}, t_{0} \approx 0.39 \mathrm{~ms}$, and $t_{1} \approx 0.87 \mu \mathrm{~s}$.
- The constant term, 4.85ms didn't appear in the model on the previous slide. I included it to account for the fixed overheads in the algorithm, which apparently are fairly large.
- The other terms are (surprisingly) reasonable \odot.

Full Disclosure

- To fit the model to the data, I discarded the data from the $P=1$ case.
- Visually, it was an outlier (too slow!).
- My main focus is the parallel case anyway.
- Note that the $t_{\text {update }}$ is dominant for large values of N, but the other parameters matter for small values of N.
- For example, I don't want the "best-fit" for large N to produce a model that predicts negative run-times for small N.
- So,
\star I did a least-squares (minimize the square of the absolute error) first to obtain an estimate of the parameters.
\star I fixed $t_{\text {update }}$ to the value from that fit and re-fit the other parameters to minimize the square of the relative error.
* I fixed the non $t_{\text {update }}$ parameters and did one more least-sqares fit for $t_{\text {update }}$ to minimize the square of the absolute error.

Announcements and reminders

Review

I'll add somthing for this.

