Dynamic Programming and MPI

Mark Greenstreet

CpSc 418 - Oct. 30, 2012

Lecture Outline

- Dynamic Programming
 - The editing distance problem.
 - Computing editing distance with dynamic programming.
 - Parallel Implementation
- Implementing Dynamic Programming in MPI

Genome Comparison

- Poodles and German Shepherds both descended from wolves?
- Which is the closer descendant?
- Let *P*, *G* and *W* be the genomes (strings) for a poodle, a german shepherd, and a wolf.
 - Compute a "distance" from W to P and from W to G.
 - ► How?
 - Consider editing operations to transform W to P (or vice-versa):
 - ★ insert a character, c₁ into the W string;
 - ★ delete a character, c₂ from the W string;
 - ★ replace a character, c_3 , in the W string with a new character, c_4 .
 - Assign a cost to each of these operations according to how likely the mutation is.
 - ▶ Find the minimum cost sequence of edits that transforms *W* to *P*.
 - ► The cost of this sequence of edits is the editing distance between *W* and *P*, edist(*W*, *P*).

Example

What is the editing distance between "hello world" and "hew gold"?

- Exploring all possible sequences of edits would be very expensive (i.e. exponential cost).
- Key idea: what if we knew the optimal editing sequences for

```
▶ "hello world" → "hew gol",
▶ "hello worl" → "hew gold", and
▶ "hello worl" → "hew gol",
then, edist("hello world", "hew gold") would be

min( edist("hello world", "hew gol") + cost(insert' d'),
        edist("hello worl", "hew gold") + cost(delete' d'),
        edist("hello worl", "hew gold") + 0
)
```

Building a cost tableau

- Let prefix(n, s) be the first n characters of string s.
- Let
 - $ightharpoonup p_{ins} = p_{del} = cost of inserting or deleting a character.$
 - $ightharpoonup p_{rpl} = of replacing a character.$
- When i and j are both greater than 1:

```
\begin{aligned} \text{cost}[\texttt{i},\texttt{j}] &= & \min( & \text{cost}[\texttt{i}-1,\texttt{j}] + p_{del}, \\ & \text{cost}[\texttt{i},\texttt{j}-1] + p_{ins}, \\ & \text{cost}[\texttt{i}-1,\texttt{j}-1] + p_{rpl} \end{aligned}
```

Getting Started

- cost[0,0] = 0: the empty-string matches the empty-string.
- cost[i,0] = $i * p_{del}$:
 - We can't quite use the rule from the previous slide, because we don't have cost [i,-1] or cost [i-1, j-1].
 - cost[i,0] is the editing distance from a string with i characters to the empty string.
 - ► The only way to transform a string with i characters to the empty string is to delete all the characters.
 - ightharpoonup \therefore cost[i,0] = i * p_{del} .
- cost[0, j] = j * p_{ins}:
 In this case, we're inserting j characters to transform the empty string into a string with j characters.

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	' e '	'w'	, ,	
	j = 0	j = 1	j = 2	j = 3	j = 4	
i = 0						
'h', $i = 1$						
'e', i = 2						
'l', i = 3						
'1', i = 4						
'o', i = 5						
i i						

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	'w'	/ /	
	j = 0	j = 1	<u>j</u> = 2	j = 3	j = 4	
i = 0	0					
'h', i = 1						
'e', i = 2						
'1', i = 3						
'l', i = 4						
'o', i = 5						
i i						

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j் = 1	j = 2	j = 3	j = 4	
i = 0	0	2				
'h', $i = 1$						
'e', i = 2						
'1', i = 3						
'1', i = 4						
'o', i = 5						
:						

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j் = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4			
'h', $i = 1$						
'e', i = 2						
'l', i = 3						
'1', i = 4						
'o', i = 5						
i:						

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

	'h'	'e'	' w'	, ,	
j = 0	j = 1	j = 2	j = 3	j = 4	
0	2	4	6	8	
	j = 0 0	j = 0 j = 1	j=0 $j=1$ $j=2$	j = 0 $j = 1$ $j = 2$ $j = 3$	j = 0 $j = 1$ $j = 2$ $j = 3$ $j = 4$

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

	'h'	'e'	' w'	, ,	
j = 0	j = 1	j = 2	j = 3	j = 4	
0	2	4	6	8	
2					
	0	$\begin{array}{c c} j = 0 & j = 1 \\ 0 & 2 \end{array}$	j = 0 $j = 1$ $j = 2$ 0 2 4	j = 0 $j = 1$ $j = 2$ $j = 3$ 0 2 4 6	j = 0 $j = 1$ $j = 2$ $j = 3$ $j = 4$ 0 2 4 6 8

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j் = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', $i = 1$	2					
'e', i = 2	4					
'1', i = 3	6					
'1', i = 4	8					
'o', i = 5	10					
:	:					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j் = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', i = 1	2	0				
'e', i = 2	4					
11', i = 3	6					
11', i = 4	8					
'o', i = 5	10					
:	i					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j் = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', $i = 1$	2	0	2			
'e', i = 2	4					
'1', i = 3	6					
'1', i = 4	8					
'o', i = 5	10					
:	i					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', $i = 1$	2	0	2	4	6	
'e', i = 2	4					
'1', i = 3	6					
'1', i=4	8					
'o', i = 5	10					
:	i					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', $i = 1$	2	0	2	4	6	
'e', i = 2	4	2				
'1', i = 3	6					
'1', i=4	8					
'o', i = 5	10					
:	i					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', $i = 1$	2	0	2	4	6	
'e', i = 2	4	2	0			
'1', i = 3	6					
'1', i=4	8					
'o', i = 5	10					
:	i					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', i = 1	2	0	2	4	6	
'e', i = 2	4	2	0	2	4	
11', i = 3	6					
11', i = 4	8					
'o', i = 5	10					
:	i					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', i = 1	2	0	2	4	6	
'e', i = 2	4	2	0	2	4	
11', i = 3	6	4				
11', i = 4	8					
'o', i = 5	10					
:	i					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j = 1	<u>j</u> = 2	<u>j</u> = 3	j = 4	
i = 0	0	2	4	6	8	• • • •
'h', $i = 1$	2	0	2	4	6	• • • •
'e', i = 2	4	2	0	2	4	• • • •
'1', i = 3	6	4	2			
'1', $i = 4$	8					
'o', i = 5	10					
:	i					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', $i = 1$	2	0	2	4	6	
'e', i = 2	4	2	0	2	4	
'1', i = 3	6	4	2	3		
'1', $i = 4$	8					
'o', i = 5	10					
:	i					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j் = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', $i = 1$	2	0	2	4	6	
'e', i = 2	4	2	0	2	4	
'1', i = 3	6	4	2	3	5	
'1', i = 4	8					
'o', i = 5	10					
:	i					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', $i = 1$	2	0	2	4	6	
'e', i = 2	4	2	0	2	4	
'1', i = 3	6	4	2	3	5	
'1', $i = 4$	8	6	4	5	6	
'o', i = 5	10					
:	i					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', $i = 1$	2	0	2	4	6	
'e', i = 2	4	2	0	2	4	
'1', i = 3	6	4	2	3	5	
'1', i=4	8	6	4	5	6	
'o', i = 5	10	8	6	7	8	
:	:					

- Assume $p_{ins} = p_{del} = 2$, $p_{rpl} = 3$.
- The tableau:

		'h'	'e'	' w'	, ,	
	j = 0	j = 1	j = 2	j = 3	j = 4	
i = 0	0	2	4	6	8	
'h', $i = 1$	2	0	2	4	6	
'e', i = 2	4	2	0	2	4	
'1', i = 3	6	4	2	3	5	
11', i = 4	8	6	4	5	6	
'o', i = 5	10	8	6	7	8	
:	:	:		:	:	٠

The final tableau

		'h'	' e '	' w'	1 1	' g '	′0′	'1'	'd'
	0	2	4	6	8	10	12	14	16
'h'	2	0	2	4	6	8	10	12	14
'e'	4	2	0	2	4	6	8	10	12
11'	6	4	2	3	5	7	9	8	10
'1'	8	6	4	5	6	8	10	9	11
′ 0′	10	8	6	7	8	9	8	10	12
, ,	12	10	8	9	7	9	10	11	13
'w'	14	12	10	8	9	10	12	13	14
′ 0′	16	14	12	10	11	12	10	12	14
'r'	18	16	14	12	13	14	12	13	15
11'	20	18	16	14	15	16	14	12	14
'd'	22	20	18	16	17	18	16	14	12

Observations

- We can compute the editing distance between two strings of length N in $O(N^2)$ sequential time.
 - ▶ A single tableau entry can be computed in *O*(1) time.
 - ▶ There are $O(N^2)$ tableau entries.
- The algorithm can also provide a sequence of editing operation that achieves the minimum cost.
 - After computing the tableau, work backwards from the lower-right corner to the upper left.
 - ▶ This takes *O*(*N*) additional time.
 - ▶ Warning: it also requires $O(N^2)$ storage.
 - ★ This may be impractical for larger problems.
 - ightharpoonup We can do better, but that's not the topic of this course. \bigcirc
- If we don't need the sequence of editing operations, O(N) space is sufficient.
 - ▶ Only need to store row i 1 until we're done computing row i.

Implementing the code

Code sketch:

Warning: storing the entire tableau array would require $O(N^2)$ space (as noted on slide 9).

O(N) Storage

- Use an array, cost[0..(N-1)]. Initially, cost[j] = 2*j.
- The "for j" loop from slide 10 will maintain cost such that when the loop condition is tested:
 - All elements of cost with indices less than j have values for the current row (i.e. row i).
 - ► All elements of cost with indices greater than or equal to j have values for the previous row (i.e. row i-1).
- One tricky point: computing cost [j] (i.e. tableau[i,j]) requires the value of tableau[i-1,j-1], but we've already set cost [j-1] to the value of tableau[i,j-1].
 - Solution. Use local variables cost_n and cost_nw:
 - * cost_n is the cost of the tableau entry to the "north" of the entry currently being computed; i.e., cost_n = tableau[i-1,j].
 - * cost_nw is the cost of the tableau entry to the "northwest" of the entry currently being computed; i.e., cost_nw = tableau[i-1,j-1].
 - At the beginning of the body of the for j loop:
 - ★ Set cost_nw to cost_n.
 - * Set cost_n to cost[j].

 Note that cost[j] hasn't been updated yet; so it still has the value of tableau[i-1,i].

Editting Distance In C

```
int edist(char *top, char *left, Penalty *p) {
   int ncols = strlen(top);
   int nrows = strlen(left);
   int *cost = (int *)malloc(ncols*sizeof(int));
   for (int j = 0; j < ncols; j++)
      cost[i] = 2*(i+1); // initialize cost
   for (int i = 0; i < nrows; i++) { // each tableau row
      int cost_n = 2*i;
      int cost_w = 2*(i+1);
      for (int j = 0; j < ncols; j++) { // each tableau column
         int cost_nw = cost_n;
         cost_n = cost[j];
         cost[j] = min(
            cost_nw + ((top[j] == left[i]) ? 0 : p->replace),
            min(cost_n, cost_w) + p->insdel);
         cost_w = cost[i];
    } return(cost[ncols-1]);
```

Code at: simple_edist.c

Do it in parallel

- Find the parallelism
- Find the overhead
 - Commnication
 - Idle processis
- Implement the code (in MPI)
- Measure the performance

Dependencies

A tableau element can be updated when the values for its incoming arrows are available.

- Initially, tableau[0,0] can be computed.
- Second, *tableau[0,1]* and *tableau[1,0]* can be computed in parallel.
- Third, tableau[0,2], tableau[1,1], and tableau[2,0] can be computed in parallel.

First Parallel Version

In Peril-L (see Oct. 25 slides)

```
for i in 0..(2N-1) {
    forall j in 0..i {
        update tableau[j,i-j];
    }
}
```

- Each element update involves six communication actions:
 - ▶ Receive values from N, W, and NW neighbours.
 - Send values to S, E, and SE neighbours.
- Communication cost will dominate computation.
- This is an example of "unlimitted" parallelism leading to an inefficient algorithm.

Partition Work into Blocks

Divide the tableau into $B \times B$ blocks.

- Computing the tableau entries for a $B \times B$ block requires
 - ► O(B²) computation
 - 4 communications the "diagonal" values just involve appending one more element to each vector sent.
 - ► Each communication operation transfers *B* + 1 values.
- Simple approach: compute editing distance between two strings of length N using P processors.
 - ▶ Divide tableau into P^2 blocks, each of size $(N/P) \times (N/P)$.
 - Each processor is responsible for one column.
 - ★ The processor computes the tableau for the block from top-to-bottom.
 - ★ To work on a block, processors 1 ... P 1 must first receive the cost-vector from the processor on its left.
 - When a processor finishes a block, it sends the cost vector for its right eedge to the processor on its right.
 - Each communication operation transfers B values.

Second Parallel Version

```
for d in 0..(2P-2) { // each of the 2P - 1 diagonals
  forall b in 0..max(d+1, 2P-(d+1)) { // each block along
    for i in 0..((N/P)-1) { // the diagonal
        for j2 in 0..((N/P)-1) {
            update tableau[(N/P)*(d-b) + i2, (N/P)*b + j2]
        }
        }
    }
}
```

- This algorithm suffers from idle processors.
 - Initially, only one processor is active.
 - After the first procesor finishes its first block, two procesors are active.
 - All processors are active only when computing the blocks on the anti-diagonal.
 - So, we'd expect a maximum speed-up of about P/2.
- I'll implement and analyse this version anyway, and leave the improvements for a homework problem.

Performance (1/2)

• The pieces of the critical path:

- ► A is the initial computation of the upper left box of the tableau by processor Proc₀.
- ▶ B is the time for processor Proc₀ to send a message (the cost vector for the right edge of the tableau block it just evaluated) to processor Proc₁.
- C is the time for a processor to receive a message, compute a block, send a message. The critical path continues on the same processor.
- D is the time for a processor to receive a a message, compute a block, and send a message. The critical path continues on the next processor to the right.
- E is the time for the rightmost processor to receive a message and update the final block to obtain the final cost.

Performance (2/2)

The total time:

- At each of the steps, a processor computes the tableau entries for a $(N/P) \times (N/P)$ block. There are 2P-1 such steps, for a total compute time of $t_{update}(2P-1)N^2/P^2$ where t_{update} is the time to compute a single update of the tableau.
- At every step except for the last one, the processor sends a message to its successor. Likewise, at every step except for the first one, the processor receives a message from its predecessor. The total communication time is: $2(t_{send}(N/P) + t_{recv}(N/P))(P-1)$, where $t_{send}(N/P)$ is the time to send a message of N/P cost values, and $t_{recv}(N/P)$ is the time to receive such a message.
- Assume that the time to send and receive a message with N/P elements is $t_0 + t_1(N/P)$, then the total time for the algorithm is:

$$t_{update} \frac{(2P-1)N^2}{P^2} + 2\left(t_0 + \frac{N}{P}t_1\right)(P-1)$$

For $N \gg P \gg 1$, this is approximately $2t_{update}N^2/P$, which means we expect a speed-up of roughly half the number of processors.

Let's try it

 I implemented the algorithm described above using MPI and ran it using the lin01... lin25.ugrad.cs.ubc.ca machines.

Fitting the parameters of the

model from the previous slide to the measured run-times yields:

$$t = \left(4.85 \cdot 10^{-3} + 7.82 \cdot 10^{-4} p + 1.77 \cdot 10^{-6} \frac{N}{P} (P - 1) + 2.30 \cdot 10^{-8} \frac{N^2}{P^2} (2P - 1)\right)$$

- This yields: $t_{update} \approx 23 \text{ns}$, $t_0 \approx 0.39 \text{ms}$, and $t_1 \approx 0.87 \mu \text{s}$.
 - ► The constant term, 4.85ms didn't appear in the model on the previous slide. I included it to account for the fixed overheads in the algorithm, which apparently are fairly large.
 - ► The other terms are (surprisingly) reasonable ©.

Full Disclosure

- To fit the model to the data, I discarded the data from the P=1 case.
 - Visually, it was an outlier (too slow!).
 - My main focus is the parallel case anyway.
- Note that the t_{update} is dominant for large values of N, but the other parameters matter for small values of N.
 - ► For example, I don't want the "best-fit" for large N to produce a model that predicts negative run-times for small N.
 - ▶ So,
 - I did a least-squares (minimize the square of the absolute error) first to obtain an estimate of the parameters.
 - ★ I fixed t_{update} to the value from that fit and re-fit the other parameters to minimize the square of the relative error.
 - ★ I fixed the non t_{update} parameters and did one more least-sqares fit for t_{update} to minimize the square of the absolute error.

Announcements and reminders

Review

I'll add somthing for this.