Work Allocation

Mark Greenstreet

CpSc 418 — Oct. 25, 2012

Mark Greenstreet Work Allocation

Lecture Outline

Work Allocation

@ Static Allocation (matrices and other arrays)
» Stripes
» Blocks
» Block-Cyclic
» Irregular meshes

@ Dynamic Allocation
» Work Queues
» Work Stealing
» Trees

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 1/13

Static Allocation: Paritioning Matrices

Original row— column-
matrix stripes

blocks block—

I'\‘7f\]';f\

Mark Greenstreet CpSc 418 — Oct. 25, 2012 2/13

Matrix Multiplication

@ Examined in September 25 lecture.
@ Consider distributing a N x N matrix over P processors:
» If arranged as P strips of N/P rows,

* then computing a matrix multiplication requires each process to send
and receive P — 1 messages of size N?/P.
» If arranged as v/P x /P blocks of size (N/v/P) x (N/+v/P),
* then computing a matrix multiplication requires each process to send
and receive v/ P messages of size N?/P.
» In practice, communication cost much more than computation.

* Thus, the second arrangement achieves good speed-ups for smaller
matrices than the first.

* Both approaches have the same asymptotic performance.

* What does this say about Amdahl’s law?

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 3/13

LU-Decomposition

@ Given a matrix, A, factor into matrices L, U, and P such that
PA = LU where
» L is lower-triangular (all elements above the main diagonal are 0).
» U is upper-triangular (all elements below the main diagonal are 0).
» Pis a permutaion matrix (rearranges the rows of A).

@ Why?
» We often want to solve linear systems:

Given A and y, find x such that Ax = y.
» If we can factor A so that PA = LU, then we get:

x=U"L""Py

* Computing w = Py is very easy (just a permutation).
* Computing z = L~'w is easy O(N?) operations.
* Computing x = U~ 'z is easy O(N?) more operations.

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 4/13

LU-Decomposition

@ Find the largest element in the first column (a reduce operation).

@ Swap the row for that column with the first row, and scale to make
the A171 =1.
@ Eliminate all elements in the first column except for A 1.

» The multipliers for this form a column of the L matrix.
» The main diagonal and the elements above it form the U matrix.

@ Now, repeat for the (N — 1) x (N — 1) submatrix.

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 5/13

LU animated

Initial matrix

6/13

Work Allocation CpSc 418 — Oct. 25, 2012

Mark Greenstreet

LU animated

After first LU-decomp step

6/13

Work Allocation CpSc 418 — Oct. 25, 2012

Mark Greenstreet

LU animated

T e e e e & ™ @

=

After second LU-decomp step Matrix

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 6/13

LU animated

After final LU-decomp step Matrix

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 6/13

LU animated

O oocooooooo-

After final LU-decomp step Matrix

row— column— blocks block—
stripes stripes cyclic

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 6/13

More meshes

@ matrices used for linear algebra problems
@ also used for representing spatial data and finite element
computation.

repEadh drid location updates its value based on:
e its current value;
e the current values of its neighbours.
} until (convergence target reached)
@ multi-resolution methods are common, but present extra
challenges for distributing data and work.
@ This isn’t a scientific computing course:

» So, I'll just let you know that the issues are there.
» Lots of work has been done in this area.
» When/if you need it, you can check the current state-of-the-art.

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 7/13

Dynamic Scheduling

@ Work queues

@ Trees and capping

@ Work Stealing

@ An example: PReach

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 8/13

Work Queues

while (the work queue is not empty) {
wait for a free worker process;
textrmAssign a task from the queue to the worker;

}

worker (Task) {
W = estimate of work required to perform Task;
if (W < threshold)
perform Task;
else {
{Taskl, Task2} = divide(Task);
insert (WorkQueue, Taskl);
insert (WorkQueue, Task2);

@ A reasonable model if tasks are relatively independent.
@ Can be extended to handle simple dependencies between tasks.

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 9/13

Trees and Capping

Mark Greenstreet Work Allocation

Example: PReach

insert initial states into work queue
while (any process has a non-empty work-queue) {
Each process:
receive any incoming states
dequeue a state if one is waiting
if this state is new {
compute successors of this state
send these successors to their owner processes

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 11/13

Work Stealing

Mark Greenstreet Work Allocation

Summary

@ Work allocation determines how parallel taskw will be distributed
between processes.

@ What is the difference between static and dynamic work
allocation?

@ Why might we create more processes than we have processors?

@ What is block-cyclic allocation?
Give an example of where block-cyclic allocation is useful.

@ What is a work queue?

Mark Greenstreet Work Allocation CpSc 418 — Oct. 25, 2012 13/13

