Work Allocation

Mark Greenstreet

CpSc 418 - Oct. 25, 2012

Lecture Outline

Work Allocation

- Static Allocation (matrices and other arrays)
- Stripes
- Blocks
- Block-Cyclic
- Irregular meshes
- Dynamic Allocation
- Work Queues
- Work Stealing
- Trees

Static Allocation: Paritioning Matrices

Original matrix

- ${ }^{\circ}+\theta^{\circ}+\theta^{\circ}+\theta^{\circ}+\theta^{\circ}$
 - $0^{\circ}+0^{\circ}+\theta^{\circ}+\theta^{\circ}+{ }^{\circ}$

 00000006006 - $0 \cdot 0 \cdot 0 \cdot 0 \cdot 0$ -6 6 - 06006 - $0 \cdot 0 \cdot 0 \cdot 0 \cdot 00000$ -90 9090909096

 - 0.0000000
rowstripes

 - $\odot \bullet \bullet$ - $0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0$ - 0 - $0-0 \cdot 0 \cdot 0$ -- 0 - 000 - $0^{-2}-0000$ - 0 - 0 - +90

 - 0 - θ - θ - $\theta+\theta+\theta$

stripes

blocks

block-

Matrix Multiplication

- Examined in September 25 lecture.
- Consider distributing a $N \times N$ matrix over P processors:
- If arranged as P strips of N / P rows,
* then computing a matrix multiplication requires each process to send and receive $P-1$ messages of size N^{2} / P.
- If arranged as $\sqrt{P} \times \sqrt{P}$ blocks of size $(N / \sqrt{P}) \times(N / \sqrt{P})$,
\star then computing a matrix multiplication requires each process to send and receive \sqrt{P} messages of size N^{2} / P.
- In practice, communication cost much more than computation.
\star Thus, the second arrangement achieves good speed-ups for smaller matrices than the first.
* Both approaches have the same asymptotic performance.
^ What does this say about Amdahl's law?

LU-Decomposition

- Given a matrix, A, factor into matrices L, U, and P such that $P A=L U$ where
- L is lower-triangular (all elements above the main diagonal are 0).
- U is upper-triangular (all elements below the main diagonal are 0).
- P is a permutaion matrix (rearranges the rows of A).
- Why?
- We often want to solve linear systems:

Given A and y, find x such that $A x=y$.

- If we can factor A so that $P A=L U$, then we get:

$$
x=U^{-1} L^{-1} P y
$$

\star Computing $w=$ Py is very easy (just a permutation).
\star Computing $z=L^{-1} w$ is easy $O\left(N^{2}\right)$ operations.
\star Computing $x=U^{-1} z$ is easy $O\left(N^{2}\right)$ more operations.

LU-Decomposition

- Find the largest element in the first column (a reduce operation).
- Swap the row for that column with the first row, and scale to make the $A_{1,1}=1$.
- Eliminate all elements in the first column except for $A_{1,1}$.
- The multipliers for this form a column of the L matrix.
- The main diagonal and the elements above it form the U matrix.
- Now, repeat for the $(N-1) \times(N-1)$ submatrix.

LU animated

LU animated

LU animated

$$
\begin{aligned}
& {\left[\begin{array}{lllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]} \\
& \text { After second LU-decomp step Matrix }
\end{aligned}
$$

LU animated

$\left[\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right]$ After final

LU animated

After final LU-decomp step Matrix

rowstripes

columnstripes

blocks

blockcyclic

More meshes

- matrices used for linear algebra problems
- also used for representing spatial data and finite element computation.
repEach grid location updates its value based on:
- its current value;
- the current values of its neighbours.
\} until (convergence target reached)
- multi-resolution methods are common, but present extra challenges for distributing data and work.
- This isn't a scientific computing course:
- So, l'll just let you know that the issues are there.
- Lots of work has been done in this area.
- When/if you need it, you can check the current state-of-the-art.

Dynamic Scheduling

- Work queues
- Trees and capping
- Work Stealing
- An example: PReach

Work Queues

```
while (the work queue is not empty)
    wait for a free worker process;
    textrmAssign a task from the queue to the worker;
}
worker(Task) {
    W = estimate of work required to perform Task;
    if(W \leq threshold)
        perform Task;
    else {
        {Task1, Task2} = divide(Task);
        insert(WorkQueue, Task1);
        insert(WorkQueue, Task2);
    }
}
```

- A reasonable model if tasks are relatively independent.
- Can be extended to handle simple dependencies between tasks.

Trees and Capping

Example: PReach

```
insert initial states into work queue
while (any process has a non-empty work-queue) {
    Each process:
    receive any incoming states
    dequeue a state if one is waiting
    if this state is new {
        compute successors of this state
        send these successors to their owner processes
        }
}
```


Work Stealing

Summary

- Work allocation determines how parallel taskw will be distributed between processes.
- What is the difference between static and dynamic work allocation?
- Why might we create more processes than we have processors?
- What is block-cyclic allocation? Give an example of where block-cyclic allocation is useful.
- What is a work queue?

