
Work Allocation

Mark Greenstreet

CpSc 418 – Oct. 25, 2012

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 0 / 13



Lecture Outline

Work Allocation
Static Allocation (matrices and other arrays)

I Stripes
I Blocks
I Block-Cyclic
I Irregular meshes

Dynamic Allocation
I Work Queues
I Work Stealing
I Trees

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 1 / 13



Static Allocation: Paritioning Matrices

matrix

blocks
cyclic
block−

Original row−
stripes

column−
stripes

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 2 / 13



Matrix Multiplication

Examined in September 25 lecture.
Consider distributing a N × N matrix over P processors:

I If arranged as P strips of N/P rows,
F then computing a matrix multiplication requires each process to send

and receive P − 1 messages of size N2/P.
I If arranged as

√
P ×
√

P blocks of size (N/
√

P)× (N/
√

P),
F then computing a matrix multiplication requires each process to send

and receive
√

P messages of size N2/P.
I In practice, communication cost much more than computation.

F Thus, the second arrangement achieves good speed-ups for smaller
matrices than the first.

F Both approaches have the same asymptotic performance.
F What does this say about Amdahl’s law?

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 3 / 13



LU-Decomposition

Given a matrix, A, factor into matrices L, U, and P such that
PA = LU where

I L is lower-triangular (all elements above the main diagonal are 0).
I U is upper-triangular (all elements below the main diagonal are 0).
I P is a permutaion matrix (rearranges the rows of A).

Why?
I We often want to solve linear systems:

Given A and y , find x such that Ax = y .
I If we can factor A so that PA = LU, then we get:

x = U−1L−1Py

F Computing w = Py is very easy (just a permutation).
F Computing z = L−1w is easy O(N2) operations.
F Computing x = U−1z is easy O(N2) more operations.

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 4 / 13



LU-Decomposition

Find the largest element in the first column (a reduce operation).
Swap the row for that column with the first row, and scale to make
the A1,1 = 1.
Eliminate all elements in the first column except for A1,1.

I The multipliers for this form a column of the L matrix.
I The main diagonal and the elements above it form the U matrix.

Now, repeat for the (N − 1)× (N − 1) submatrix.

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 5 / 13



LU animated

Initial matrix

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 6 / 13



LU animated

After first LU-decomp step

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 6 / 13



LU animated

After second LU-decomp step Matrix

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 6 / 13



LU animated

After final LU-decomp step Matrix

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 6 / 13



LU animated

After final LU-decomp step Matrix

cyclic
block−

stripes
blocksrow− column−

stripes

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 6 / 13



More meshes

matrices used for linear algebra problems
also used for representing spatial data and finite element
computation.

repeat {Each grid location updates its value based on:
• its current value;
• the current values of its neighbours.

} until(convergence target reached)

multi-resolution methods are common, but present extra
challenges for distributing data and work.
This isn’t a scientific computing course:

I So, I’ll just let you know that the issues are there.
I Lots of work has been done in this area.
I When/if you need it, you can check the current state-of-the-art.

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 7 / 13



Dynamic Scheduling

Work queues
Trees and capping
Work Stealing
An example: PReach

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 8 / 13



Work Queues
while(the work queue is not empty) {

wait for a free worker process;
textrmAssign a task from the queue to the worker;

}

worker(Task) {
W = estimate of work required to perform Task;
if(W ≤ threshold)

perform Task;
else {
{Task1, Task2} = divide(Task);
insert(WorkQueue, Task1);
insert(WorkQueue, Task2);

}
}

A reasonable model if tasks are relatively independent.
Can be extended to handle simple dependencies between tasks.

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 9 / 13



Trees and Capping

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 10 / 13



Example: PReach

insert initial states into work queue
while(any process has a non-empty work-queue) {

Each process:
receive any incoming states
dequeue a state if one is waiting
if this state is new {

compute successors of this state
send these successors to their owner processes

}
}

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 11 / 13



Work Stealing

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 12 / 13



Summary

Work allocation determines how parallel taskw will be distributed
between processes.
What is the difference between static and dynamic work
allocation?
Why might we create more processes than we have processors?
What is block-cyclic allocation?
Give an example of where block-cyclic allocation is useful.
What is a work queue?

Mark Greenstreet Work Allocation CpSc 418 – Oct. 25, 2012 13 / 13


