Work Allocation

Mark Greenstreet

CpSc 418 – Oct. 25, 2012

Mark Greenstreet

Work Allocation

CpSc 418 - Oct. 25, 2012 0 / 13

Lecture Outline

Work Allocation

- Static Allocation (matrices and other arrays)
 - Stripes
 - Blocks
 - Block-Cyclic
 - Irregular meshes
- Dynamic Allocation
 - Work Queues
 - Work Stealing
 - Trees

Static Allocation: Paritioning Matrices

Mark Greenstreet

Work Allocation

Matrix Multiplication

- Examined in September 25 lecture.
- Consider distributing a $N \times N$ matrix over *P* processors:
 - If arranged as P strips of N/P rows,
 - ★ then computing a matrix multiplication requires each process to send and receive P - 1 messages of size N^2/P .
 - If arranged as $\sqrt{P} \times \sqrt{P}$ blocks of size $(N/\sqrt{P}) \times (N/\sqrt{P})$,
 - * then computing a matrix multiplication requires each process to send and receive \sqrt{P} messages of size N^2/P .
 - ► In practice, communication cost much more than computation.
 - Thus, the second arrangement achieves good speed-ups for smaller matrices than the first.
 - * Both approaches have the same asymptotic performance.
 - What does this say about Amdahl's law?

LU-Decomposition

- Given a matrix, A, factor into matrices L, U, and P such that PA = LU where
 - L is lower-triangular (all elements above the main diagonal are 0).
 - ► *U* is upper-triangular (all elements below the main diagonal are 0).
 - ► *P* is a permutaion matrix (rearranges the rows of *A*).
- Why?
 - We often want to solve linear systems:

Given A and y, find x such that Ax = y.

• If we can factor A so that PA = LU, then we get:

$$x = U^{-1}L^{-1}Py$$

- * Computing w = Py is very easy (just a permutation).
- ★ Computing $z = L^{-1}w$ is easy $O(N^2)$ operations.
- ★ Computing $x = U^{-1}z$ is easy $O(N^2)$ more operations.

LU-Decomposition

- Find the largest element in the first column (a reduce operation).
- Swap the row for that column with the first row, and scale to make the $A_{1,1} = 1$.
- Eliminate all elements in the first column except for A_{1,1}.
 - The multipliers for this form a column of the *L* matrix.
 - ► The main diagonal and the elements above it form the *U* matrix.
- Now, repeat for the $(N-1) \times (N-1)$ submatrix.

After first LU-decomp step

After second LU-decomp step Matrix

After final LU-decomp step Matrix

After final LU-decomp step Matrix

Marl	k G	reei	nstr	eet

More meshes

- matrices used for linear algebra problems
- also used for representing spatial data and finite element computation.

repEach grid location updates its value based on:

- its current value;
- the current values of its neighbours.
- } until (convergence target reached)
- multi-resolution methods are common, but present extra challenges for distributing data and work.
- This isn't a scientific computing course:
 - So, I'll just let you know that the issues are there.
 - Lots of work has been done in this area.
 - When/if you need it, you can check the current state-of-the-art.

Dynamic Scheduling

- Work queues
- Trees and capping
- Work Stealing
- An example: PReach

Work Queues

```
while (the work queue is not empty) {
    wait for a free worker process;
    textrmAssign a task from the queue to the worker;
}
```

```
worker(Task) {
    W = estimate of work required to perform Task;
    if(W ≤ threshold)
        perform Task;
    else {
        {Task1, Task2} = divide(Task);
        insert(WorkQueue, Task1);
        insert(WorkQueue, Task2);
    }
}
```

- A reasonable model if tasks are relatively independent.
- Can be extended to handle simple dependencies between tasks.

Mark Greenstreet

Trees and Capping

Mark Greenstreet

Example: PReach

insert initial states into work queue
while (any process has a non-empty work-queue) {
 Each process:
 receive any incoming states
 dequeue a state if one is waiting
 if this state is new {
 compute successors of this state
 send these successors to their owner processes
 }

Work Stealing

Summary

- Work allocation determines how parallel taskw will be distributed between processes.
- What is the difference between static and dynamic work allocation?
- Why might we create more processes than we have processors?
- What is block-cyclic allocation?
 Give an example of where block-cyclic allocation is useful.
- What is a work queue?