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Message Passing Computers

NIC NIC NIC

CPUCPU CPU...

network switch

Multiple CPU’s
Communication through a network:

I Commodity networks for small clusters.
I Special high-performance networks for super-computers

Programming model:
I Explicit message passing between processes (like Erlang)
I No shared memory or variables.
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Some simple message-passing clusters

25 linux workstations (e.g. lin01 . . . lin25.ugrad.cs.ubc.ca) and
standard network routers.

I A good platform for learning to use a message-passing cluster.
I But, we’ll figure out that network bandwidth and latency are key

bottlenecks.
A “blade” based cluster, for exampe:

I 16 “blades” each with 4 6-core CPU chips, and 32G of DRAM.
I An “infiniband” or similar router for about 10-100 times the

bandwidth of typical ethernet.
I The price tag is ∼$300K.

F Great if you need the compute power.
F But, we won’t be using one in this class.
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The K Machine

The world’s second fastest super-computer
88,128 8-core SPARC processors.
LINPACK performance: 10.51 PFlops
Power consumption 9.89 MW

I Roughly 10,000 homes.
I Operating costs estimated at $10M/year.
I But, it’s one of the best supercomputers for PFlops/Watt

Interconnect:
I “6D” torus network (called “Tofu”).
I 10 Gbytes/sec, bi-directional, for each link.
I Hardware support for reduce operations and synchronization.

Programming model:
I A version of MPI tuned for this machine.
I Supports topology-aware programs.
I The interconnect is designed to make it easy to partition the

machine so different jobs can run on different partitions.
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The Westgrid Clusters

Clusters at various Western Canadian Universities (including
UBC).
Up to 9600 cores.
Available for research use.
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Network Topologies

Network topologies are to the message-passing community what
cache-coherence protocols are to the shared-memory people:

I Lots of papers have been published.
I Machine designers are always looking for better networks.
I Network topology has a strong impact on performance, the

programming model, and the cost of building the machine.
A message-passing machine may have multiple networks:

I A general purpose network for sending messages between
machines.

I Dedicated networks for reduce, scan, and synchronization:
F The reduce and scan networks can include ALUs (integer and/or

floating point) to perform common operations such as sums, max,
product, all, any, etc. in the networking hardware.

F A synchronization network only needs to carry a few bits and can be
designed to minimize latency.
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Ring-Networks
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Advantages: simple.
Disadvantages:

I Worst-case latency grows as O(P) where P is the number of
processors.

I Easily congested – limited bandwidth.
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Star Networks
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Advantages:
I Low-latency – single hop betweeen any two nodes
I High-bandwidth – no contention for connections with different

sources and destinations.
Disadvantages:

I Amount of routing hardware grows as O(P2).
I Requires lots of wires, to and from switch –

Imagaine trying to build a switch that connects to 1000 nodes!
Summary

I Surprisingly practical for 10-50 ports.
I Hierarchies of cross-bars are often used for larger networks.
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A crossbar switch
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Meshes
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Advantages:
I Easy to implement: chips and circuit boards are effectively

two-dimensional.
I Cross-section bandwidth grow with number of processors –

more specifically, bandwidth grows as
√

P.
Disadvantages:

I Worst-case latency grows as
√

P.
I Edges of mesh are “special cases.”
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Tori

Advantages:
I Has the good features of a mesh, and
I No special cases at the edges.

Disadvantages:
I Worst-case latency grows as

√
P.
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From a mesh to a torus (1/2)

col

row

0

1

2

3

4

5

row

0

1

2

3

4

5

0 1 2 3 4 5column

0 1 2 345

Fold left-to-right, and make connections where the left and right
edges meet.
Now, we’ve got a cylinder.
Note that there are no “long” horizontal wires: the longest wires
jump across one processor.
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From a mesh to a torus (2/2)
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Fold top-to-bottom, and make connections where the top and
bottom edges meet.
Now, we’ve got a torus.
Again there are no “long” wires.
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Hypercubes

A 0−dimensional (1 node), radix−2 hypercube
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Hypercubes

A 1−dimensional (2 node), radix−2 hypercube
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Hypercubes

A 2−dimensional (4 node), radix−2 hypercube
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Hypercubes

A 3−dimensional (8 node), radix−2 hypercube
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Hypercubes

A 4−dimensional (16 node), radix−2 hypercube
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Hypercubes

A 5−dimensional (32 node), radix−2 hypercube
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Hypercubes
A 5−dimensional (32 node), radix−2 hypercube

Advantages
I Small diameter (log N)
I Lots of bandwidth
I Easy to partition.
I Simple model for algorithm design.

Disadvantages
I Needs to be squeezed into a three-dimensional universe.
I Lots of long wires to connect nodes.
I Design of a node depends on the size of the machine.
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Dimension Routing

% Send a message, msg, from node src to node dst
for i = 1:d % d is dimension of the hypercube
if(bit(i, src) != bit(i, dst)) % if different for dimension i
send(msg, link[i]); % then send msg to our i-neighbour
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How big is a hypercube?

Consider a hypercube with N = 2d nodes.
Assume each link can transfer one message in each direction in
one time unit. The analysis here easily generalizes for links of
higher or lower bandwidths.
Let each node send a message to each of the other nodes.
Using dimension routing,

I Each node will send N/2 messages for each of the d dimensions.
I This takes time N/2.
I As soon as one batch of messages finishes the dimension-0 route,

that batch can continue with the dimension-1 route, and the next
batch can start the dimension 0 route.

I So, we can route with a throughput of
(

N
2

)
messages per N/2

time.
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How big is a hypercube?

Consider a hypercube with N = 2d nodes.
Assume each link can transfer one message in each direction in
one time unit. The analysis here easily generalizes for links of
higher or lower bandwidths.
Let each node send a message to each of the other nodes.
Using dimension routing,

we can route with a throughput of
(

N
2

)
messages per N/2 time.

Consider any plane such that N/2 nodes are on each side of the
plane.

I 1
2

(
N
2

)
messages must cross this plane in N/2 time.

I This means that at least N − 1 links must cross the plane.
I The plane has area O(N).
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How big is a hypercube?

Consider a hypercube with N = 2d nodes.
Assume each link can transfer one message in each direction in
one time unit. The analysis here easily generalizes for links of
higher or lower bandwidths.
Let each node send a message to each of the other nodes.
Using dimension routing,

we can route with a throughput of
(

N
2

)
messages per N/2 time.

Consider any plane such that N/2 nodes are on each side of the
plane.

I The plane has area O(N).

Because the argument applies for any plane, we conclude that the
hypercube has diameter O(

√
N) and thus volume O(N

3
2 ).

Asymptotically, the hypercube is all wire.
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Real-life networks

3D Tori.
Trees and fat-trees.
5 and 6D tori.
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What this means for programmers

Location matters.
I The meaning of location depends on the machine.
I Getting a good programming model is hard.

What it means for different kinds of computers
I Supercomputers
I Clouds
I PCs of the future(?)
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