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An Ancient Shared-Memory Machine

MEM

CPU0 CPU1

Multiple CPU’s (typically two) shared a memory
If both attempted a memory read or write at the same time

I One is chosen to go first.
I Then the other does it’s operation.
I That’s the role of the switch in the figure.

By using multiple memory units (partitioned by address), and a
switching network, the memory could keep up with the processors.
But, now that processors are 100’s of times faster than memory,
this isn’t practical.
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A Shared-Memory Machine with Caches
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Caches reduce the number of main memory reads and writes.
But, what happens when a processor does a write?
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Today’s Story Line

Shared memory is wonderful:
I Now, you don’t have to bundle up your data structures as

messages.
I Just share a pointer.

But, what about concurrent accesses?
I How do I know that you’re done building a data structure before I try

to use it?
I What if we have a dynamically changing data structure?

F How do I make sure that I don’t change something when you’re in the
middle of using it.
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Simple Example: a bank account

ATM withdrawal Payroll deposit
atm(acct, amt) {

W1: x = acct.bal;
W2: x = x - amt;
W3: acct.bal = x;

}

pay(acct, amt) {
D1: y = acct.bal;
D2: y = y + amt;
D3: acct.bal = y;

}

What happens if a withdrawal and deposit happen “at the same time”?
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Concurrent withdrawl and deposit
Given a starting balance of $1,000,
concurrently withdraw $50 from an ATM while receiving a payroll
deposit of $1,200.
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Dekker’s Algorithm
Problem statement: ensure that at most one thread is in its critical
section at any given time.

thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: while(flag[1]) {
PC0= 4: if(turn != 0) {
PC0= 5: flag[0] = false;
PC0= 6: while(turn != 0);
PC0= 7: flag[0] = true;
PC0= 8: }
PC0= 9: }
PC0=10: critical section
PC0=11: turn = 1;
PC0=12: flag[0] = false;
PC0=13: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: while(flag[0]) {
PC1= 4: if(turn != 1) {
PC1= 5: flag[1] = false;
PC1= 6: while(turn != 1);
PC1= 7: flag[1] = true;
PC1= 8: }
PC1= 9: }
PC1=10: critical section
PC1=11: turn = 0;
PC1=12: flag[1] = false;
PC1=13: }

See http://en.wikipedia.org/wiki/Dekker’s_algorithm.
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Dekker’s algorithm guarantees mutual exclusion

Assume initialization: PC0 = PC1 = 0; flag[0] = flag[1] = false;
turn = 0.
Invariant:
I = ∀i ∈ {0,1}. flag[i] = (PCi ∈ {3,4,5,8,9,10,11})

∧ ¬((PC0 = 10) ∧ (PC1 = 10))
I Assertions about PCi refer to the state immediately before executing

the statement at PCi .
I Individual program statements are executed atomically, i.e. without

interference by actions of other threads.
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Proof that I is an invariant (1/2)

I = ∀i ∈ {0,1}. flag[i] = (PCi ∈ {3,4,5,8,9,10,11})
∧ ¬((PC0 = 10) ∧ (PC1 = 10))

I holds initially.
Statements that don’t modify flag[i], PCi 6∈ {2,5,7,12}.

I Thus, they maintain the clause connecting the value of flat[i] to
PCi .

I For example, if PCi = 0,
I

I Then I implies that flag[i] = false.
I Executing while(true) { sets PCi ← 1 and leaves flag[i] = false.
I Thus, I continues to hold.

Similar reasoning applies for statements that do modify flag[i],
PCi ∈ {2,5,7,12}.
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Proof that I is an invariant (2/2)

I = ∀i ∈ {0,1}. flag[i] = (PCi ∈ {3,4,5,8,9,10,11})
∧ ¬((PC0 = 10) ∧ (PC1 = 10))

Now consider ¬((PC0 = 10) ∧ (PC1 = 10)).
I If PC0 ← 10,

F Rhen PC0 was 3 which means that ¬flag[1].
F Because I held before performing the PC0 = 3: while(flag[1]) {

statement, PC1 6= 10.
F Thus, PC1 6= 10 after performing the statement at PC0 = 3, and
¬((PC0 = 10) ∧ (PC1 = 10)) continues to hold.

I Similar reasoning applies when PC1 ← 10.

Thus, I is maintained by all actions of both threads.
I is an invariant.
Also, I guarantees mutual exclusion because I implies
¬((PC0 = 10) ∧ (PC1 = 10)).
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Dekker’s algorithm guarantees progress

Assume that every statement eventually terminates.
I This requires that every time a thread enters its critical section, it

eventually leaves.
I We don’t require that the non-critical code terminate.

We can show a seqence of “eventually” properties that shows that
any time a thread tries to enter its critical section it eventually does
so. I.e.

PCi = 2 ; PCi = 10

I’ll spare you the proof.
I In class, I was asked about why the algorithm includes the turn

variable.
I turn is needed to ensure that both threads can make progress.
I See slide 29 for a “simplified” version without turn and why it fails.
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Dekker’s algorithm with caches
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The MESI protocol
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Caches can share read-only copies of a cache block.
When a processor writes a cache block, the first write goes to
main memory.

I The other caches see the write and invalidate their copies.
I This ensures that writeable blocks are exclusive.
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A typical cache
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Only the read-path is shown. Writing is similar.
This is a 16K-byte, 4-way set-associative cache, with 16 byte
cache blocks.
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Snooping caches

Each cache has two copies of the tags.
I One copy is used for operations by the local processor.
I The other copy is used to monitor operations on the main memory

bus.
F if another processor attempts to read a block which we have in the

exclusive or modified state, we provide the data (and update
main memory).

F if another processor attempts to write a block that we have, we
invalidate our block (updating main memory first if our copy was in the
modified state.

Pros and cons:
I Fairly easy to implement.
I Doesn’t scale to large numbers of processors.
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Directory schemes

Main memory keeps a copy of the data and
I a bit-vector that records which processors have copies, and
I a bit to indicate that one processor has a copy and it may be

modified.
A processor accesses main memory as required by the MESI
protocol.

I The memory unit sends messages to the other CPUs to direct them
to take actions as needed by the protocol.

I The ordering of these messages ensures that memory stays
consistent.
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Sequential Consistency

Memory is said to be sequentially consistent if
All memory reads and writes from all processors can be arranged
into a single, sequential order, such that:

I The operations for each processor occur in the global ordering in
the same order as they did on the processor.

I Every read gets the value of the preceeding write to the same
address.

Sequential consistency corresponds to what programmers thing
“ought” to happen.
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MESI Guarantees Sequential Consistency

First we prove that at most one processor can have the cache
block for any particular address in the E or M state.
Define:

value(addr)
= cachei(addr).data, if ∃i . cachei(addr).state ∈ {E,M}
= MEM(addr), otherwise

We can show that every read(addr) gets the value value(addr),
and that
We value(addr) gives the value from the most recent write to
addr .
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Dekker’s with C-threads

typedef struct { % thread parameters
int id, ntrials;

} dekker args;

% shared variables
int flag[] = {0,0};
int count[] = {0,0};
int turn = 0;

int dekker thread(void *void arg) {
...
for(int i = 0; i < ntrials; i++) {

do some work;
acquire the lock;
critical section (includes test for inteference);
release lock;

}
}
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Work, then lock

% do a random amount of “work” before critical region
r = 23*r & 0x3f; % simple pseudo-random, range = {0 . . . 63}
for(int j = 0; j < r; j++); % this is “work”?

% acquire the lock
flag[me] = TRUE; % indicate intention to enter critical region
while(flag[!me]) {

if(turn != me) {
flag[me] = FALSE; % give the other thread a chance
while(turn != me); % spin waiting for turn
flag[me] = TRUE; % try again

}
}
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Critical section, then unlock

% critical section
for(int j = 0; j < 10; j++) {

count[me] = j;
% check zero reports error and dies if count[!me] != 0
check zero(count, !me, i);

}
count[me] = 0;

% release the lock
turn = !me;
flag[me] = 0;
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Let’s try it

% gcc -std=c99 dekker0.c cz.o -o d0
% d0
check zero failed for trial 8: a[0] = 1
% d0
check zero failed for trial 986: a[1] = 4
% d0
check zero failed for trial 898: a[1] = 4
% d0
check zero failed for trial 10: a[0] = 1
% ...

What happened?
Why?
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Weaker Consistency
The problem of write-buffers.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 23 / 31



Fixing the bug
% acquire the lock
flag[me] = TRUE; % indicate intention to enter critical region
asm ("mfence");

while(flag[!me]) {
if(turn != me) {

flag[me] = FALSE; % give the other thread a chance
while(turn != me); % spin waiting for turn
flag[me] = TRUE; % try again

asm ("mfence");
}

}

Try again:
% d1
ok
% d1
ok
% d1
ok
% ...
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What’s mfence?

A memory fence.
Simple version:

I All loads and stores issued by the processor that executes the
mfence must complete globally before execution continues beyond
the mfence.

mfence instructions are expensive
And in-line assembly code is painful

I Not portable.
I Hard to read.
I Who wants to program in assembly?
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Summary

Shared-Memory Architectures
I Use cache-coherence protocols to allow each processor to have its

own cache while maintaining (almost) the appearance of having
one shared memory for all processors.

I A typical protocol: MESI
I The protocol can be implemented by snooping or directories.

Shared-Memory Programming
I Need to avoid interference between threads.

F Assertional reasoning (e.g. invariants) are crucial,
much more so than in sequential programming.

F There are too many possible interleavings to handle intuitively.
F In practice, we don’t formally prove complete programs,

but we use the ideas of formal reasoning.
I Real computers don’t provide sequential consistency.

F Use a thread library.
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Announcements (1/2)

CS Distinguished Lecture Series:
Speaker: Thomas Ball, Microsoft Research
Title: Advances in Automated Theorem Proving.
When: Thursday, October 11, 2012 at 3:30pm
Where: Hugh Dempster Pavilion – Room 110
Hosts: Mark Greenstreet and Alan Hu
Abstract: In the last decade, advances in
satisfiability-modulo-theories (SMT) solvers have powered a new
generation of software tools for verification and testing. These
tools transform various program analysis problems into the
problem of satisfiability of formulas in propositional or first-order
logic, where they are discharged by SMT solvers, such as Z3 from
Microsoft Research (MSR).
Vote: YES
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Announcements (2/2)

October 8 (Monday): Thanksgiving.
I No TA office hours.
I I might hold a late-afternoon/early-evening office hour. I’ll post an

announcement to Piazza.
October 9 (Tuesday):

I Instructor office hour: 11:30am – 1pm.
I Lecture topic: Message passing machines.
I Reading: Lin & Snyder, Chapter 2, through “Observations of Our

Six Computers.”
I Homework 2 due at 11:59pm.

October 11 (Thursday):
I No Instructor office hours.
I Lecture: DLS, room DMP 110 (see previous slide)

October 18 (Thursday): Midterm (in class)
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Supplementary Material

Dekker’s algorithm without the turn variable:

thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: while(flag[1]) {
PC0= 5: flag[0] = false;
PC0= 7: flag[0] = true;
PC0= 9: }
PC0=10: critical section
PC0=12: flag[0] = false;
PC0=13: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: while(flag[0]) {
PC1= 5: flag[1] = false;
PC1= 7: flag[1] = true;
PC1= 9: }
PC1=10: critical section
PC1=12: flag[1] = false;
PC1=13: }

I’ve left the PC numbers as in the original version (slide 7).
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Analysis of the “no-turn” version

The “no-turn” version guarantees mutual exclusion.

I The invariant and proof on slides 8–10 applies for this version as
well.

The “no-turn” version does not guarantee progress.

I See thec counter-example on the next slide.
I By repeating lines 4–10 indefinitely

F Thread 0 never enters its critical region.
F Thread 1 enters its critical region an unbounded number of times.

Thread 0 waits forever to enter its critical region.
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Counter-example trace for the no-turn algorithm
step from state perform

PC0 PC1 flag[0] flag[1]

0 0 0 false false PC0 = 0: while(true) {
1 1 0 false false PC0 = 1: non-critical code
2 2 0 false false PC0 = 2: flag[0] = true;

3 3 0 true false PC1 = 0: while(true) {
4 3 1 true false PC1 = 1: non-critical code
5 3 2 true false PC1 = 2: flag[1] = true;

6 3 3 true true PC0 = 3: while(flag[1]) {
7 5 3 true true PC0 = 5: flag[0] = false;

8 7 3 false true PC1 = 3: while(flag[1]) {
9 7 10 false true PC1 = 10: critical section

10 7 12 false true PC1 = 12: flag[1] = false;

11 7 0 false false PC0 = 7: flag[0] = true;

12 3 0 false false PC1 = 0: while(true) {
≥13 repeat steps 4–12 indefinitely.
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