Shared Memory Multiprocessors

Mark Greenstreet

CpSc 418 — Oct. 4, 2012

Ouitline:
@ Shared-Memory Architectures
@ Memory Consistency
@ Examples

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 1/31

An Ancient Shared-Memory Machine

CPUO

.—

CPU1

B

M

@ Multiple CPU’s (typically two) shared a memory

@ If both attempted a memory read or write at the same time

» One is chosen to go first.
» Then the other does it’s operation.

» That’s the role of the switch in the figure.
@ By using multiple memory units (partitioned by address), and a
switching network, the memory could keep up with the processors.
@ But, now that processors are 100’s of times faster than memory,

this isn’t practical.

Mark Greenstreet Shared Memory Multiprocessors

CpSc 418 — Oct. 4, 2012

A Shared-Memory Machine with Caches

CPUO| [CPU 1| e (rilljllJ
A A 1
Y v Y
cache 0| |cache 1| «- | cache
n—1

A
\J

A
\J

@ Caches reduce the number of main memory reads and writes.

@ But, what happens when a processor does a write?

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012

3/31

Today’s Story Line

@ Shared memory is wonderful:
» Now, you don’t have to bundle up your data structures as
messages.
» Just share a pointer.
@ But, what about concurrent accesses?
» How do | know that you're done building a data structure before | try

to use it?
» What if we have a dynamically changing data structure?

* How do | make sure that | don’t change something when you're in the
middle of using it.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 4/31

Simple Example: a bank account

ATM withdrawal

Payroll deposit

atm(acct, amt) {
x = acct.bal;
X = X — amt;

Wl:
W2 :
W3:

}

pay (acct, amt) {

D1l: y = acct.bal;

D2: y =y + amt;

D3: acct.bal = vy;
}

What happens if a withdrawal and deposit happen “at the same time”?

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012

5/31

Concurrent withdrawl and deposit

@ Given a starting balance of $1,000,
@ concurrently withdraw $50 from an ATM while receiving a payroll
deposit of $1,200.

bal=1000
‘y \%‘
x=1000 y=1 000
x=950 x=y=1000 y=2200
x=950 x=1000
bal=950 y=1000 y=2200 bal=2200
. i Ay & Ay \DSL i .
y=950 y=1000 x=950 x=1000 x=2200
bal=950 bal=950 y=2200 bal=2200 bal=2200
P2 ¢ w‘ y \])3A y ¢ w2
y=2150 y=2200 Xx=950 x=2150
bal=950 bal=950 bal=2200 bal=2200
D3 ¢ D3 ¢ ¢W3 ¢ w3
bal=2150 bal=2200 bal=950 bal=2150

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 6/31

Dekker’s Algorithm

Problem statement: ensure that at most one thread is in its critical
section at any given time.

thread 0:

PCo= 0: while(true) {

PCo= 1:
PCo= 2
PCo= 3
PCo= 4:
PCo= 5:
PCo= 6
PCo= 7
PCo= 8:
PCo= 9:
PCp=10:
PCo=11:
PCp=12:
PCp=13:

}

non-critical code

flag[0] = true;
while (flag[1]) {
if (turn !'= 0) {
flag[0] = false;
while (turn != 0);
flag[0] = true;
}
}
critical section
turn = 1;
flag[0] = false;

while (true) {

thread 1:
PCi= O:
PCy= 1
PCi= 2
PCi= 3:
PCi= 4:
PCi= 5
PCi= 6
PCy= 7
PCi= 8:
PCi= 9:
PC1=10:
PCy=11":
PCy=12:
PC1=13:

}

non-critical code
flag[l] = true;
while (flag[0]) {
if (turn !'= 1) {
flag[l] = false;
while (turn != 1)
flag[l] = true;
}
}

critical section
turn = 0;

flag[l] = false;

’

See http://en.wikipedia.org/wiki/Dekker’ s_algorithm.

Mark Greenstreet Shared Memory Multiprocessors

CpSc 418 — Oct. 4, 2012

7/31

http://en.wikipedia.org/wiki/Dekker's_algorithm

Dekker’s algorithm guarantees mutual exclusion

@ Assume initialization: pcg = pc1 = 0; f1ag[0] = flag[1] = false;

turn = 0
@ Invariant:
| =

Vie {0,1}. f1agii1 = (ec; € {3,4,5,8,9,10,11})
A =((pco =10) A (pcy = 10))

» Assertions about pc; refer to the state immediately before executing
the statement at pc;.

» Individual program statements are executed atomically, i.e. without
interference by actions of other threads.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 8/31

Proof that / is an invariant (1/2)

| = Vie {0,1}. f1ag0i) = (pc; € {3,4,5,8,9,10,11})
A =((pco =10) A (pcy = 10))

@ / holds initially.

@ Statements that don’t modify f1ag1i1, pc; & {2,5,7,12}.

» Thus, they maintain the clause connecting the value of f1at [i] to
PCij.
For example, if pc; = 0,

Then /implies that f1ag[i] = false.

Executing while (true) { setsPC; <+ 1andleaves flag[i] = false.

Thus, I continues to hold.

@ Similar reasoning applies for statements that do modify f1ag1i1,
PCj € {2,5,7, 12}.

vVvyvyYyvyy

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 9/31

Proof that / is an invariant (2/2)

| = Vie {0,1}. f1agli1 = (pc; € {3,4,5,8,9,10,11})
A =((pco =10) A (pcy = 10))

@ Now consider —((pco = 10) A (pc1 = 10)).
» If pcy « 10,

* Rhen pCy was 3 which means that =flag[1].

* Because / held before performing the PCo = 3: while (flag[1]) {
statement, pCy # 10.

* Thus, pCy # 10 after performing the statement at pco = 3, and
—((PCo = 10) A (PCy = 10)) continues to hold.

» Similar reasoning applies when pcy < 10.
@ Thus, / is maintained by all actions of both threads.
@ /is an invariant.
@ Also, / guarantees mutual exclusion because / implies
—((pco = 10) A (pcy1 = 10)).

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 10/31

Dekker’s algorithm guarantees progress

@ Assume that every statement eventually terminates.

» This requires that every time a thread enters its critical section, it
eventually leaves.

» We don’t require that the non-critical code terminate.

@ We can show a segence of “eventually” properties that shows that
any time a thread tries to enter its critical section it eventually does
so. l.e.

PC,’ZZ ~ PC,':10

@ ['ll spare you the proof.

» In class, | was asked about why the algorithm includes the turn
variable.

» turn is needed to ensure that both threads can make progress.
» See slide 29 for a “simplified” version without turn and why it fails.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 11/31

Dekker’s algorithm with caches

Mark Greenstreet Shared Memory Multiprocessors

The MESI protocol

remote write®, € I = invalid
update memory S = shared
(carefully) E = exclusive
M = modified

write* = write~through
(to memory

write = write—back
(local—cache only)

€ = "spontaneous”

remote
transition

write®, €

@ Caches can share read-only copies of a cache block.
@ When a processor writes a cache block, the first write goes to

main memory.
» The other caches see the write and invalidate their copies.
» This ensures that writeable blocks are exclusive.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012

13/31

A typical cache

tag
47:12

4TD—> hit

> data

cache
index
11:4

addr[0:47]

2

position
within
cache—block
(ignored)

data

tag

data

tag

data

tag

data

@ Only the read-path is shown. Writing is similar.

@ This is a 16K-byte, 4-way set-associative cache, with 16 byte

cache blocks.

Mark Greenstreet Shared Memory Multiprocessors

CpSc 418 — Oct. 4, 2012

14/31

Snooping caches

@ Each cache has two copies of the tags.

» One copy is used for operations by the local processor.
» The other copy is used to monitor operations on the main memory
bus.

* if another processor attempts to read a block which we have in the
exclusive or modified state, we provide the data (and update
main memory).

* if another processor attempts to write a block that we have, we
invalidate our block (updating main memory first if our copy was in the
modified state.

@ Pros and cons:

» Fairly easy to implement.
» Doesn'’t scale to large numbers of processors.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 15/31

Directory schemes

@ Main memory keeps a copy of the data and

» a bit-vector that records which processors have copies, and

» a bit to indicate that one processor has a copy and it may be
modified.

@ A processor accesses main memory as required by the MESI
protocol.

» The memory unit sends messages to the other CPUs to direct them
to take actions as needed by the protocol.

» The ordering of these messages ensures that memory stays
consistent.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 16/31

Sequential Consistency

Memory is said to be sequentially consistent if
@ All memory reads and writes from all processors can be arranged
into a single, sequential order, such that:

» The operations for each processor occur in the global ordering in
the same order as they did on the processor.

» Every read gets the value of the preceeding write to the same
address.

@ Sequential consistency corresponds to what programmers thing
“ought” to happen.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 17 /31

MESI Guarantees Sequential Consistency

@ First we prove that at most one processor can have the cache
block for any particular address in the E or M state.

@ Define:
value(addr)
= cachej(addr).data, if 3i. cache;(addr).state € {E, M}
= MEM(addr), otherwise
@ We can show that every read(addr) gets the value value(addr),
and that
@ We value(addr) gives the value from the most recent write to
adar.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 18/31

Dekker’s with C-threads

typedef struct { % thread parameters
int id, ntrials;
} dekker_args;

o)

% shared variables
int flag[] = {0,0};
int count[] = {0,0};
int turn = 0;

int dekker_thread(void xvoid.arg) {

for(int i = 0; i < ntrials; i++) {
do some work;
acquire the lock;
critical section (includes test for inteference);
release lock;

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 19/31

Work, then lock

% do a random amount of “work” before critical region

r = 23*«r & 0x3f;

for(int j = 0;

o)

% acquire the lock

flag[me] = TRUE;
while (flag[!'mel) {
if (turn != me) {

flag[me]

while (turn

flag[me]

simple pseudo-random, range = {0 ... 63}

this is “work™?

% indicate intention to enter critical region

spin waiting for turn
try again

o° o° oo

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012

give the other thread a chance

20/31

Critical section, then unlock

% critical section
for(int j = 0; 3 < 10; j++) {
count [me] = j;
% check_zero reports error and dies if count ['me] != 0
check_zero (count, !me, 1i);
}
count [me] = 0;
% release the lock
turn = !me;
flag[me] = 0;

Mark Greenstreet Shared Memory Multiprocessors

Let's try it

gcc —-std=c99 dekkerO.c cz.o -o dO

chzgk,zero failed for trial 8: a[0] =1
zhggk,zero failed for trial 986: af[l]
zhggk,zero failed for trial 898: af[l] = 4
Zh:gk,zero failed for trial 10: a[0] = 1

o
)

o o

Il
N

@ What happened?
@ Why?

Mark Greenstreet Shared Memory Multiprocessors

Weaker Consistency
The problem of write-buffers.

Mark Greenstreet Shared Memory Multiprocessors

Fixing the bug

% acquire the lock

flag[me] = TRUE; % indicate intention to enter critical region
__asm__("mfence");
while (flag[!'me]) {
if (turn !'= me) {
flag[me] = FALSE; give the other thread a chance

while (turn != me);
flag[me] = TRUE;
__asm__("mfence") ;

}

spin waiting for turn
try again

o o o°

@ Try again:
s dl
ok

Mark Greenstreet Shared Memory Multiprocessors

What's mfence?

@ A memory fence.
@ Simple version:

» All loads and stores issued by the processor that executes the
mfence must complete globally before execution continues beyond
the mfence.

@ mfence instructions are expensive
@ And in-line assembly code is painful

» Not portable.
» Hard to read.
» Who wants to program in assembly?

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 25/31

Summary

@ Shared-Memory Architectures
» Use cache-coherence protocols to allow each processor to have its
own cache while maintaining (almost) the appearance of having
one shared memory for all processors.
» A typical protocol: MESI
» The protocol can be implemented by snooping or directories.

@ Shared-Memory Programming
» Need to avoid interference between threads.
* Assertional reasoning (e.g. invariants) are crucial,
much more so than in sequential programming.
* There are too many possible interleavings to handle intuitively.
* In practice, we don’t formally prove complete programs,
but we use the ideas of formal reasoning.
» Real computers don’t provide sequential consistency.

* Use a thread library.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 26/31

Announcements (1/2)

CS Distinguished Lecture Series:
@ Speaker: Thomas Ball, Microsoft Research
@ Title: Advances in Automated Theorem Proving.
@ When: Thursday, October 11, 2012 at 3:30pm
@ Where: Hugh Dempster Pavilion — Room 110

@ Hosts: Mark Greenstreet and Alan Hu

@ Abstract: In the last decade, advances in
satisfiability-modulo-theories (SMT) solvers have powered a new
generation of software tools for verification and testing. These
tools transform various program analysis problems into the
problem of satisfiability of formulas in propositional or first-order
logic, where they are discharged by SMT solvers, such as Z3 from
Microsoft Research (MSR).

@ \Vote: YES

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 27/31

http://research.microsoft.com/~tball/
http://research.microsoft.com/projects/z3/

Announcements (2/2)

@ October 8 (Monday): Thanksgiving.
» No TA office hours.
» | might hold a late-afternoon/early-evening office hour. I'll post an
announcement to Piazza.
@ October 9 (Tuesday):
» Instructor office hour: 11:30am — 1pm.
» Lecture topic: Message passing machines.
» Reading: Lin & Snyder, Chapter 2, through “Observations of Our
Six Computers.”
» Homework 2 due at 11:59pm.
@ October 11 (Thursday):

» No Instructor office hours.
» Lecture: DLS, room DMP 110 (see previous slide)

@ October 18 (Thursday): Midterm (in class)

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 28/31

Supplementary Material

Dekker’s algorithm without the turn variable:

thread 0: thread 1:

PCo= 0: while(true) { PCi= 0: while(true) {

PCo= 1 non—-critical code PCi= 1 non—-critical code
PCo= 2: flag[0] = true; PCi= 2 flag[l] = true;
PCo= 3: while(flag[1l]) { PCi= 3: while(flag[0]) {
PCo= 5 flag[0] = false; PCy= 5 flag[l] = false;
PCo= 7: flag[0] = true; PCi= 7: flag[l] = true;
PCo= 9: } PCi= 9: }

PCo=10: critical section PCy=10: critical section
PCo=12: flag[0] = false; PCi=12: flag[l] = false;
PCo=13: } PC1=13: }

I've left the pc numbers as in the original version (slide 7).

Mark Greenstreet Shared Memory Multiprocessors

CpSc 418 — Oct. 4, 2012

29/31

Analysis of the “no-turn” version

@ The “no-turn” version guarantees mutual exclusion.

» The invariant and proof on slides 8—10 applies for this version as
well.
@ The “no-turn” version does not guarantee progress.

» See thec counter-example on the next slide.
» By repeating lines 4—10 indefinitely
* Thread 0 never enters its critical region.
* Thread 1 enters its critical region an unbounded number of times.

@ Thread 0 waits forever to enter its critical region.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 — Oct. 4, 2012 30/ 31

Counter-example trace for the no-turn algorithm

step from state perform
PCo PCq flag[0] flag[l]
0 0 0 false false PCo = 0: while (true) {
1 1 0 false false rcg = 1: non-critical code
2 2 0 false false PCo = 2: flag[0] = true;
3 3 0 true false pc1 = 0: while(true) {
4 3 1 true false pcy = 1: non-critical code
5 3 2 true false PCq = 2: flag[l] = true;
6 3 3 true true pcg = 3iwhile(flag[l]) {
7 5 3 true true PCo = 5: flag[0] = false;
8 7 3 false true PC{ = 3:while (flag[l]) {
9 7 | 10 false true pcy = 10: critical section
10 7 12 false true PCy = 12: flag[l] = false;
11 7 0 false false PCo = 7: flag[0] = true;
12 3 0 false false pcy = 0:while(true) {
>13 | repeat steps 4—12 indefinitely. |

Mark Greenstreet Shared Memory Multiprocessors

CpSc 418 — Oct. 4, 2012 31/31

