
Shared Memory Multiprocessors

Mark Greenstreet

CpSc 418 – Oct. 4, 2012

Outline:
Shared-Memory Architectures
Memory Consistency
Examples

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 1 / 31

An Ancient Shared-Memory Machine

MEM

CPU0 CPU1

Multiple CPU’s (typically two) shared a memory
If both attempted a memory read or write at the same time

I One is chosen to go first.
I Then the other does it’s operation.
I That’s the role of the switch in the figure.

By using multiple memory units (partitioned by address), and a
switching network, the memory could keep up with the processors.
But, now that processors are 100’s of times faster than memory,
this isn’t practical.
Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 2 / 31

A Shared-Memory Machine with Caches

CPU

MEM

cache 0

CPU 0

cache 1

CPU 1 ...

...

n−1

cache

n−1

Caches reduce the number of main memory reads and writes.
But, what happens when a processor does a write?
Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 3 / 31

Today’s Story Line

Shared memory is wonderful:
I Now, you don’t have to bundle up your data structures as

messages.
I Just share a pointer.

But, what about concurrent accesses?
I How do I know that you’re done building a data structure before I try

to use it?
I What if we have a dynamically changing data structure?

F How do I make sure that I don’t change something when you’re in the
middle of using it.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 4 / 31

Simple Example: a bank account

ATM withdrawal Payroll deposit
atm(acct, amt) {

W1: x = acct.bal;
W2: x = x - amt;
W3: acct.bal = x;

}

pay(acct, amt) {
D1: y = acct.bal;
D2: y = y + amt;
D3: acct.bal = y;

}

What happens if a withdrawal and deposit happen “at the same time”?

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 5 / 31

Concurrent withdrawl and deposit
Given a starting balance of $1,000,
concurrently withdraw $50 from an ATM while receiving a payroll
deposit of $1,200.

bal=1000

x=1000
bal=2200
x=2200y=950

bal=950
y=1000
bal=950 y=2200

x=950

bal=950
y=2200 x=2150

bal=2200
x=950

bal=2200
y=2150
bal=950

x=950
y=1000

x=1000
y=2200bal=950 bal=2200

x=y=1000 y=2200x=950

x=1000 y=1000

W1

W2

W3

D1

D2

D3

W2

W3

W3

D3

D1

D1

D2

W1

W1

W2

D1

D2

D3

W1

W2

W3

D2

D3

D3

W3

W2

bal=2150 bal=2200 bal=950 bal=2150

D2

bal=2200

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 6 / 31

Dekker’s Algorithm
Problem statement: ensure that at most one thread is in its critical
section at any given time.

thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: while(flag[1]) {
PC0= 4: if(turn != 0) {
PC0= 5: flag[0] = false;
PC0= 6: while(turn != 0);
PC0= 7: flag[0] = true;
PC0= 8: }
PC0= 9: }
PC0=10: critical section
PC0=11: turn = 1;
PC0=12: flag[0] = false;
PC0=13: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: while(flag[0]) {
PC1= 4: if(turn != 1) {
PC1= 5: flag[1] = false;
PC1= 6: while(turn != 1);
PC1= 7: flag[1] = true;
PC1= 8: }
PC1= 9: }
PC1=10: critical section
PC1=11: turn = 0;
PC1=12: flag[1] = false;
PC1=13: }

See http://en.wikipedia.org/wiki/Dekker’s_algorithm.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 7 / 31

http://en.wikipedia.org/wiki/Dekker's_algorithm

Dekker’s algorithm guarantees mutual exclusion

Assume initialization: PC0 = PC1 = 0; flag[0] = flag[1] = false;
turn = 0.
Invariant:
I = ∀i ∈ {0,1}. flag[i] = (PCi ∈ {3,4,5,8,9,10,11})

∧ ¬((PC0 = 10) ∧ (PC1 = 10))
I Assertions about PCi refer to the state immediately before executing

the statement at PCi .
I Individual program statements are executed atomically, i.e. without

interference by actions of other threads.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 8 / 31

Proof that I is an invariant (1/2)

I = ∀i ∈ {0,1}. flag[i] = (PCi ∈ {3,4,5,8,9,10,11})
∧ ¬((PC0 = 10) ∧ (PC1 = 10))

I holds initially.
Statements that don’t modify flag[i], PCi 6∈ {2,5,7,12}.

I Thus, they maintain the clause connecting the value of flat[i] to
PCi .

I For example, if PCi = 0,
I

I Then I implies that flag[i] = false.
I Executing while(true) { sets PCi ← 1 and leaves flag[i] = false.
I Thus, I continues to hold.

Similar reasoning applies for statements that do modify flag[i],
PCi ∈ {2,5,7,12}.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 9 / 31

Proof that I is an invariant (2/2)

I = ∀i ∈ {0,1}. flag[i] = (PCi ∈ {3,4,5,8,9,10,11})
∧ ¬((PC0 = 10) ∧ (PC1 = 10))

Now consider ¬((PC0 = 10) ∧ (PC1 = 10)).
I If PC0 ← 10,

F Rhen PC0 was 3 which means that ¬flag[1].
F Because I held before performing the PC0 = 3: while(flag[1]) {

statement, PC1 6= 10.
F Thus, PC1 6= 10 after performing the statement at PC0 = 3, and
¬((PC0 = 10) ∧ (PC1 = 10)) continues to hold.

I Similar reasoning applies when PC1 ← 10.

Thus, I is maintained by all actions of both threads.
I is an invariant.
Also, I guarantees mutual exclusion because I implies
¬((PC0 = 10) ∧ (PC1 = 10)).

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 10 / 31

Dekker’s algorithm guarantees progress

Assume that every statement eventually terminates.
I This requires that every time a thread enters its critical section, it

eventually leaves.
I We don’t require that the non-critical code terminate.

We can show a seqence of “eventually” properties that shows that
any time a thread tries to enter its critical section it eventually does
so. I.e.

PCi = 2 ; PCi = 10

I’ll spare you the proof.
I In class, I was asked about why the algorithm includes the turn

variable.
I turn is needed to ensure that both threads can make progress.
I See slide 29 for a “simplified” version without turn and why it fails.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 11 / 31

Dekker’s algorithm with caches

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 12 / 31

The MESI protocol

write*,

E

I

S

M

remote

write*
local

local read

remote
ε

write*,

local
write

remote
read

remote read
update

memory

ε

εremote write*,
update memory

I
= shared
= invalid

S
E = exclusive

= modifiedM

write*
(to memory)

= write−through

write
(local−cache only)

= write−back

ε = "spontaneous"
transition

(carefully)

Caches can share read-only copies of a cache block.
When a processor writes a cache block, the first write goes to
main memory.

I The other caches see the write and invalidate their copies.
I This ensures that writeable blocks are exclusive.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 13 / 31

A typical cache

= =
47:12

tag

data

hit

= =

cache−block

tag data

(ignored)

tag data

3:0

tag data

cache
index

tag dataaddr[0:47]

position
within

11:4

Only the read-path is shown. Writing is similar.
This is a 16K-byte, 4-way set-associative cache, with 16 byte
cache blocks.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 14 / 31

Snooping caches

Each cache has two copies of the tags.
I One copy is used for operations by the local processor.
I The other copy is used to monitor operations on the main memory

bus.
F if another processor attempts to read a block which we have in the

exclusive or modified state, we provide the data (and update
main memory).

F if another processor attempts to write a block that we have, we
invalidate our block (updating main memory first if our copy was in the
modified state.

Pros and cons:
I Fairly easy to implement.
I Doesn’t scale to large numbers of processors.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 15 / 31

Directory schemes

Main memory keeps a copy of the data and
I a bit-vector that records which processors have copies, and
I a bit to indicate that one processor has a copy and it may be

modified.
A processor accesses main memory as required by the MESI
protocol.

I The memory unit sends messages to the other CPUs to direct them
to take actions as needed by the protocol.

I The ordering of these messages ensures that memory stays
consistent.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 16 / 31

Sequential Consistency

Memory is said to be sequentially consistent if
All memory reads and writes from all processors can be arranged
into a single, sequential order, such that:

I The operations for each processor occur in the global ordering in
the same order as they did on the processor.

I Every read gets the value of the preceeding write to the same
address.

Sequential consistency corresponds to what programmers thing
“ought” to happen.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 17 / 31

MESI Guarantees Sequential Consistency

First we prove that at most one processor can have the cache
block for any particular address in the E or M state.
Define:

value(addr)
= cachei(addr).data, if ∃i . cachei(addr).state ∈ {E,M}
= MEM(addr), otherwise

We can show that every read(addr) gets the value value(addr),
and that
We value(addr) gives the value from the most recent write to
addr .

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 18 / 31

Dekker’s with C-threads

typedef struct { % thread parameters
int id, ntrials;

} dekker args;

% shared variables
int flag[] = {0,0};
int count[] = {0,0};
int turn = 0;

int dekker thread(void *void arg) {
...
for(int i = 0; i < ntrials; i++) {

do some work;
acquire the lock;
critical section (includes test for inteference);
release lock;

}
}

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 19 / 31

Work, then lock

% do a random amount of “work” before critical region
r = 23*r & 0x3f; % simple pseudo-random, range = {0 . . . 63}
for(int j = 0; j < r; j++); % this is “work”?

% acquire the lock
flag[me] = TRUE; % indicate intention to enter critical region
while(flag[!me]) {

if(turn != me) {
flag[me] = FALSE; % give the other thread a chance
while(turn != me); % spin waiting for turn
flag[me] = TRUE; % try again

}
}

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 20 / 31

Critical section, then unlock

% critical section
for(int j = 0; j < 10; j++) {

count[me] = j;
% check zero reports error and dies if count[!me] != 0
check zero(count, !me, i);

}
count[me] = 0;

% release the lock
turn = !me;
flag[me] = 0;

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 21 / 31

Let’s try it

% gcc -std=c99 dekker0.c cz.o -o d0
% d0
check zero failed for trial 8: a[0] = 1
% d0
check zero failed for trial 986: a[1] = 4
% d0
check zero failed for trial 898: a[1] = 4
% d0
check zero failed for trial 10: a[0] = 1
% ...

What happened?
Why?

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 22 / 31

Weaker Consistency
The problem of write-buffers.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 23 / 31

Fixing the bug
% acquire the lock
flag[me] = TRUE; % indicate intention to enter critical region
asm ("mfence");

while(flag[!me]) {
if(turn != me) {

flag[me] = FALSE; % give the other thread a chance
while(turn != me); % spin waiting for turn
flag[me] = TRUE; % try again

asm ("mfence");
}

}

Try again:
% d1
ok
% d1
ok
% d1
ok
% ...

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 24 / 31

What’s mfence?

A memory fence.
Simple version:

I All loads and stores issued by the processor that executes the
mfence must complete globally before execution continues beyond
the mfence.

mfence instructions are expensive
And in-line assembly code is painful

I Not portable.
I Hard to read.
I Who wants to program in assembly?

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 25 / 31

Summary

Shared-Memory Architectures
I Use cache-coherence protocols to allow each processor to have its

own cache while maintaining (almost) the appearance of having
one shared memory for all processors.

I A typical protocol: MESI
I The protocol can be implemented by snooping or directories.

Shared-Memory Programming
I Need to avoid interference between threads.

F Assertional reasoning (e.g. invariants) are crucial,
much more so than in sequential programming.

F There are too many possible interleavings to handle intuitively.
F In practice, we don’t formally prove complete programs,

but we use the ideas of formal reasoning.
I Real computers don’t provide sequential consistency.

F Use a thread library.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 26 / 31

Announcements (1/2)

CS Distinguished Lecture Series:
Speaker: Thomas Ball, Microsoft Research
Title: Advances in Automated Theorem Proving.
When: Thursday, October 11, 2012 at 3:30pm
Where: Hugh Dempster Pavilion – Room 110
Hosts: Mark Greenstreet and Alan Hu
Abstract: In the last decade, advances in
satisfiability-modulo-theories (SMT) solvers have powered a new
generation of software tools for verification and testing. These
tools transform various program analysis problems into the
problem of satisfiability of formulas in propositional or first-order
logic, where they are discharged by SMT solvers, such as Z3 from
Microsoft Research (MSR).
Vote: YES

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 27 / 31

http://research.microsoft.com/~tball/
http://research.microsoft.com/projects/z3/

Announcements (2/2)

October 8 (Monday): Thanksgiving.
I No TA office hours.
I I might hold a late-afternoon/early-evening office hour. I’ll post an

announcement to Piazza.
October 9 (Tuesday):

I Instructor office hour: 11:30am – 1pm.
I Lecture topic: Message passing machines.
I Reading: Lin & Snyder, Chapter 2, through “Observations of Our

Six Computers.”
I Homework 2 due at 11:59pm.

October 11 (Thursday):
I No Instructor office hours.
I Lecture: DLS, room DMP 110 (see previous slide)

October 18 (Thursday): Midterm (in class)

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 28 / 31

Supplementary Material

Dekker’s algorithm without the turn variable:

thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: while(flag[1]) {
PC0= 5: flag[0] = false;
PC0= 7: flag[0] = true;
PC0= 9: }
PC0=10: critical section
PC0=12: flag[0] = false;
PC0=13: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: while(flag[0]) {
PC1= 5: flag[1] = false;
PC1= 7: flag[1] = true;
PC1= 9: }
PC1=10: critical section
PC1=12: flag[1] = false;
PC1=13: }

I’ve left the PC numbers as in the original version (slide 7).

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 29 / 31

Analysis of the “no-turn” version

The “no-turn” version guarantees mutual exclusion.

I The invariant and proof on slides 8–10 applies for this version as
well.

The “no-turn” version does not guarantee progress.

I See thec counter-example on the next slide.
I By repeating lines 4–10 indefinitely

F Thread 0 never enters its critical region.
F Thread 1 enters its critical region an unbounded number of times.

Thread 0 waits forever to enter its critical region.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 30 / 31

Counter-example trace for the no-turn algorithm
step from state perform

PC0 PC1 flag[0] flag[1]

0 0 0 false false PC0 = 0: while(true) {
1 1 0 false false PC0 = 1: non-critical code
2 2 0 false false PC0 = 2: flag[0] = true;

3 3 0 true false PC1 = 0: while(true) {
4 3 1 true false PC1 = 1: non-critical code
5 3 2 true false PC1 = 2: flag[1] = true;

6 3 3 true true PC0 = 3: while(flag[1]) {
7 5 3 true true PC0 = 5: flag[0] = false;

8 7 3 false true PC1 = 3: while(flag[1]) {
9 7 10 false true PC1 = 10: critical section

10 7 12 false true PC1 = 12: flag[1] = false;

11 7 0 false false PC0 = 7: flag[0] = true;

12 3 0 false false PC1 = 0: while(true) {
≥13 repeat steps 4–12 indefinitely.

Mark Greenstreet Shared Memory Multiprocessors CpSc 418 – Oct. 4, 2012 31 / 31

