
Matrix Multiplication

Mark Greenstreet

CpSc 418 – Sept. 25, 2012

Outline:
Sequential Matrix Multiplication
Parallel Implementations, Performance, and Trade-Offs.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 1 / 20

Sequential Matrix Multiplication

From September 11 & 13 slides:

mult(A, B) ->
BT = transpose(B),
lists:map(

fun(RA) ->
lists:map(

fun(CB) -> dot prod(RA, CB) end, BT)
end, A).

dot prod(V1, V2) ->
lists:foldl(

fun({X,Y},Sum) -> Sum + X*Y end,
0, lists:zip(V1, V2)).

Now, we’ll introduce List Comprehensions to get a more succinct
version.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 2 / 20

List Comprehensions
Basic version: [Expr || X <- List , etc.]

I Expr is evaluated for each element, X, of List, to produce a list.
I Example:

1> [X*X || X <- lists:seq(1, 5)].
[1,4,9,16,25]

A list comprehension can apply to multiple lists:
I Example:

2> [X*X + Y || X <- lists:seq(1, 5), Y <- [1, 2]].
[2,3,5,6,10,11,17,18,26,27].

I Note the nesting:
for each First Comprehension Variable

for each Second Comprehension Variable
Expr

A list comprehension can have filters
I Example:

3> [X*X || X <- lists:seq(1, 5), (X rem 2) == 1].
[1,9,25]

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 3 / 20

Matrix Multiplication, with comprehensions

mult(A, B) ->
BT = transpose(B),
[[dot prod(RowA, ColB) || ColB <- BT] || RowA <- A].

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 4 / 20

List Comprehensions, practice examples

Use list comprehensions to implement erlang functions for the
following problems:

double(List) -> lists:map(fun(X) 2*X end, List).
Replace lists:map with an erlang expression that uses a
comprehension.
divisible(K, List) -> lists:filter(fun(N) (N rem
K) == 0 end, List).
Returns the list of all elements of List that are divisible by K.
qsort([]) -> []; qsort(List1) -> List2.
Use two list comprehensions, one to find the elements of List1
that are less than or equal to hd(List1), and another to find the
elements that are greater than hd(List1). Sort these two with
recursive calls to qsort and concatenate the results using ++.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 5 / 20

List Comprehensions, one more practice problem

pythag(ListX, ListY) -> ListP.
ListX and ListY are lists of integers. ListP consists of all tuples
{X, Y} Y is an element of ListY, and

√
X2 + Y2 is an integer. where

X is an element of ListX, Y is an element of ListY, and X ≤ Y is an
integer. Here’s a function that tests whether or not an integer is a
perfect square:

is square(N, [Lo, Hi]) ->
Mid = (Lo + Hi) div 2,
MidSq = Mid*Mid,
if

(MidSq == N) -> true;
(Lo >= Hi) -> false;
(MidSq > N) -> is square(N, [Lo, Mid]);
(MidSq < N) -> is square(N, [Mid+1, Hi])

end.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 6 / 20

Performance – Modeled
Really simple, operation counts:

I Multiplications: n rows a ∗ n cols b ∗ n cols a.
I Additions: n rows a ∗ n cols b ∗ (n cols a− 1).
I Memory-reads: 2∗#Multiplications.
I Memory-writes: n rows a ∗ n cols b.
I Time is O(n rows a ∗ n cols b ∗ (n cols a− 1)),

If both matrices are N × N, then its O(N3).
But, memory access can be terrible.

I For example, let matrices a and b be 1000× 1000.
I Assume a processor with a 4M L2-cache (final cache), 32

byte-cache lines, and a 200 cycle stall for main memory accesses.
I Observe that a row of matrix a and a column of b fit in the cache. (a

total of ∼40K bytes).
I But, all of b does not fit in the cache (that’s 8 Mbytes).
I So, on every fourth pass through the inner loop, every read from b

is a cache miss!
I The cache miss time would dominate everything else.

This is why there are carefully tuned numerical libraries.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 7 / 20

Performance – Measured

100 101 102 103
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

102

103

N

Ti
m

e

Time for N × N matrix multiplication

Cubic of best fit: T = (107N3 + 134N2 + 173N − 32)ns.
Fit to first six data points.
Cache misses effects are visible, for N=1000:

I model predicts T = 107seconds,
I but the measured value is T = 142seconds.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 8 / 20

Parallel Algorithm 1
A BA B

Parallelize the outer-loop.

Each iteration of the outer-loop multiplies a
row of A by all of B to produce a row of A×B.

Divide A (and B) into blocks.

Each processor sends its blocks of B to all of
the the other processors.

Now, each processor has a block of rows of
A and all of B. The processor computes it’s
part of the product to produce a block of rows
of C.

Note: OpenMP does this kind of
parallelization automatically.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 9 / 20

Algorithm 1 in Erlang
par matrix mult1(ProcList, MyIndex, MyBlockA, MyBlockB) ->

NProcs = length(ProcList),
% send MyBlock to all other processes
[P ! {MyIndex, MyBlockB} || P <- ProcList],
% receive all the blocks
Bblocks = [receive {I, Block} -> Block end

|| I <- lists:seq(1,NProcs)],
% concatenate these blocks to make the B matrix
B = lists:append(Bblocks),
matrix:mult(MyBlockA, B). % our block of A*B

The math:
Let A(i , :) denote the i th row of A, and
Let B(:, j) denote the j th column of B.
Let C = A ∗ B we have: C(i , :) = A(i , :) ∗ B.

In English:
I The processor that holds a block of rows of A can compute the

corresponding rows of C.
I The processor has to have all of B. That’s what the sends and

receives do at the begining of par matrix mult1.
Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 10 / 20

Performance of Parallel Algorithm 1

CPU operations: same total number of multiplies and adds, but
distributed around P processors. Total time: O(N3/P).
Communication: Each processors sends (and receives) P − 1
messages of size N2/P. If time to send a message is t0 + t1 ∗M
where M is the size of the message, then the communication time
is

(P − 1)
(

t0 + t1
N2

P

)
= O(N2 + P), but, beware of large constants

= O(N2), N2 > P

Memory: Each process needs O(N2/P) storage for its block of A
and the result. It also needs O(N2) to hold all of B.

I The simple algorithm divides the computation across all processors,
but it doesn’t make good use of their combined memory.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 11 / 20

Parallel Algorithm 2 (illustrated)
A B

4

3

4

1

2

1

4

3

2

2

3

1

4

2

3

1

4

1

2

3

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 12 / 20

Parallel Algorithm 2 (code sketch)

Each processor first computes what it can with its rows from A and
B.

I It can only use N/P of its columns of its block from A.
I It uses its entire block from B.
I We’ve now computed one of P matrices, where the sum of all of

these matrices is the matrix AB.
We view the processors as being arranged in a ring,

I Each processor forwards its block of B to the next processor in the
ring.

I Each processor computes an new partial product of AB and adds it
to what it had from the previous step.

I This process continues until every block of B has been used by
every processor.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 13 / 20

Algorithm 2, Erlang

par matrix mult2(ProcList, MyIndex, MyBlockA, MyBlockB) ->
NProcs = length(ProcList),
NRowsA = length(A),
NColsB = length(hd(B)), % assume length(B) > 0
ABlocks0 = rotate(MyIndex, blockify cols(A, NProcs)),
PList = rotate(NProcs - (MyIndex-1),

lists:reverse(ProcList)),
helper(ProcList, ABlocks, MyBlockB,

matrix:zeros(NRowsA, NColsB)).

helper([P head | P tail], [A head | A tail], BBlock, Accum) ->
if A tail == [] -> ok;

true -> P head ! BBlock
end,
Accum2 = matrix:add(Accum, matrix:mult(A head, BBlock)),
if A tail == [] -> Accum2;

true ->
helper(P tail, A tail,

receive BBlock2 -> BBlock2 end, Accum2)
end.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 14 / 20

Algorithm 2 – notes on the Erlang code

blockify cols(A, NProcs) produces a list of NProcs
matrices.

I Each matrix has NRowsA rows and NColsA columns,
I where NColsA is the number of columns of MyBlockA.
I Let A(MyIndex, j) denote the j th such block.

rotate(N, List) ->
{L1, L2} = lists:split(N, List),
L2 ++ L1.

The algorithm is based on the formula:

C(MyIndex, :) =
NProcs∑

j=1

A(MyIndex, j) ∗ B(j , :)

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 15 / 20

Performance of Parallel Algorithm 2

CPU operations: Same as for parallel algorithm 1: total time:
O(N3/P).
Communication: Same as for parallel algorithm 1: O(N2 + P).

I With algorithm 1, each processor sent the same message to P − 1
different processors.

I With algorithm 2, for each processor, there is one destination to
which it sends P − 1 different messages.

I Thus, algorithm 2 can work efficiently with simpler interconnect
networks.

Memory: Each process needs O(N2/P) storage for its block of A,
its current block of B, and its block of the result.

I Note: each processor might hold onto its original block of B so we
still have the blocks of B available at the expected processors for
future operations.

Do the memory savings matter?

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 16 / 20

Bad performance, pass it on
Consider what happens with algorithm 2 if one processor, Pslow
takes a bit longer than the others one of the times its doing a block
multiply.

I Pslow will send it’s block from B to its neighbour a bit later than it
would have otherwise.

I Even if the neighbour had finished its previous computation on time,
it won’t be able to start the next one until it gets the block of B from
Pslow .

I Thus, for the next block computation, both Pslow and its neighbour
will be late, even if both of them do their next block computation in
the usual time.

I In other words, tardiness propagates.
Solution: forward your block to you neighbour before you use it to
perform a block computation.

I This overlaps computation with communication, generally a good
idea.

I We could send two or more blocks ahead if needed to compensate
for communication delays and variation in compute times.

I This is a way to save time by using more memory.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 17 / 20

Even less communication

In the previous algorithms, computate time grows as N3/P, while
communication time goes as (N2 + P).
Thus, if N is big enough, computation time will dominate
communication time.
There’s not much we can do to reduce the number of
computations required (I’ll ignore Strassen’s algorithm, etc. for
simplicity).
If we can use less communication, then we’ll we won’t need our
matrices to be as huge to benefit from parallel computation.

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 18 / 20

Other ways to distribute a matrix

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 19 / 20

Lower bound for communication

Mark Greenstreet Matrix Multiplication CpSc 418 – Sept. 25, 2012 20 / 20

