
Quantifying Performance

Mark Greenstreet

CpSc 418 – Sept. 20, 2012

Outline:
Measuring Time
Count 3’s performance

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 1 / 18

Questions from last lecture:
How does having the sender and receiver of a parallel program
being different threads on the same processor allow us to have
one paradigm for multi-core and clusters?
How does doing extra computation (in the prime sieve example)
save time?
What is Amdahl’s Law?

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 2 / 18

The time it module

time it provides the following functions
t(Time This, ...) evaluate the runtime of TimeThis().

I The function has many variations: t/1, t/2, t/3, and t/5.
I t(Time This) invokes Time This repeatedly until it has used a

total of 1 second. t(Time This) then returns a list of the form
[{mean, Mean}, {std, Std}], where Mean is the average,
measured runtime, and Std is the standard deviation.

I Other versions give the user finer control over how many times to
invoke Time This and what data is gathered from the runs.

log([LogIn,] Format [, Data]) Create a tuple recording
the current time and the pid of the caller. Format and Data are
arguments to io lib:format to construct a string to identify the
event being logged.
print log(Log) Print an event-log.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 3 / 18

Example: Head vs. Tail Recursion

Two implementations of sum
I Head-recursive version:

hr([]) -> 0;
hr([Head | Tail]) -> Head + hr(Tail).

I Tail-recursive version:
tr(List) -> tr(List, 0).
tr([], Sum) -> Sum;
tr([Head | Tail], Sum) -> tr(Tail, Sum+Head).

Tail-recursion:
I A function is tail-recursive if the recursion occurs at the very end.
I This means that for the recursive case, the return value of the

function is the value returned by the recursive call.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 4 / 18

Optimization: Head vs. Tail Recursion
A compiler can convert a tail-recursive function into a while-loop.

I For example, the tail-recursive version of sum becomes
tr(List) {

Sum = 0;
while(List.has next())

Sum = Sum + List.next();
return(Sum);

}
I Note: I also did the function inlining for

tr(List) -> tr(List, 0).
The same optimization doesn’t work for head-recursive functions.

I For example, to evaluate
hr([Head | Tail]) -> Head + hr(Tail).

a real function call is needed.
I The activation for the current call to hr must stay around until the

recursive call completes to perform the final addition.
Questions:

I Does the Erlang compiler optimize tail-recursive functions?
I Does it matter?

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 5 / 18

Timing: Head vs. Tail Recursion
The code, two implementations of lists:sum:

I Head recursive:
hr time(List) -> time it:t(fun() -> hr(List) end).

I Tail recursive:
tr time(List) -> time it:t(fun() -> tr(List) end).

The results:
1> c(sum).
{ok,sum} 2> R = misc:rlist(100000, 1000), ok.
ok
3> {sum:hr(R), sum:tr(R)}.
{50084422,50084422} % good – they agree. ,
4> sum:hr time(R).
[{mean,0.001237131025958},{std,1.782649536562e-4}]
5> sum:tr time(R).
[{mean,0.001033205578512},{std,7.669878290256e-5}]

Conclusion:
I The tail-recursive version is ∼20% faster.
I Tail-recursion is also important for deeply recursive functions: using

tail-recursion prevents stack overflows.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 6 / 18

List Comprehensions
Basic version: [Expr || X <- List , etc.]

I Expr is evaluated for each element, X, of List, to produce a list.
I Example:

6> [X*X || X <- lists:seq(1, 5)].
[1,4,9,16,25]

A list comprehension can apply to multiple lists:
I Example:

7> [X*X + Y || X <- lists:seq(1, 5), Y <- [1, 2]].
[2,3,5,6,10,11,17,18,26,27].

I Note the nesting:
for each First Comprehension Variable

for each Second Comprehension Variable
Expr

A list comprehension can have filters
I Example:

8> [X*X || X <- lists:seq(1, 5), (X rem 2) == 1].
[1,9,25]

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 7 / 18

Two Implementations of QuickSort
Implementation without list comprehensions:

qsort(List) -> qsort(List, []).

qsort([X], Suffix) -> [X | Suffix];
qsort([Pivot | T], Suffix) ->
{Lo, Hi} = lists:partition(fun(X) -> X < Pivot end, T),
qsort(Lo, [Pivot | qsort(Hi, Suffix)]);

qsort([], Suffix) -> Suffix.

Implementation with list comprehensions:
qsortc([Pivot|T]) ->

qsortc([X || X <- T, X < Pivot]) ++ [Pivot] ++
qsortc([X || X <- T, X >= Pivot]);
qsortc([]) -> [].

Which is faster?
I The list comprehension version traverses the list twice for each
Pivot.

I The list comprehension version uses list concatenation which has a
reputation for being slow (when it copies its left operand).

I Let’s try it.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 8 / 18

The Quickest QuickSort

The test set-up:

time(N) ->
R = misc:rlist(N, 1000000),
TC = time it:t(fun() -> qsortc(R) end),
TQ = time it:t(fun() -> qsort(R) end),
io:format("N = ∼b∼n", [N]),
io:format(

" with comprehensions: mean = ∼12.6e, std = ∼12.6e∼n",
[element(2, lists:keyfind(’mean’, 1, TC)),

element(2, lists:keyfind(’std’, 1, TC))]),
io:format(

" plain quicksort: mean = ∼12.6e, std = ∼12.6e∼n",
[element(2, lists:keyfind(’mean’, 1, TQ)),

element(2, lists:keyfind(’std’, 1, TQ))]).
time() -> time(10000).

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 9 / 18

The Quickest QuickSort

Run the test:
9> sort:time().
N = 10000
with comprehensions: mean = 8.359e-3, std = 3.385e-4
plain quicksort: mean = 9.508e-3, std = 4.236e-4

ok

The list comprehension version is faster!
I The compiler must be doing some reasonably good optimizations.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 9 / 18

I demand a rematch!
lists:partition called the comparator for each element.
I’ll write quicksort with my own partition function:

qsortp(List) -> qsortp(List, []).

qsortp([X], Suffix) -> [X | Suffix];
qsortp([Pivot | T], Suffix) ->
{Lo, Hi} = partition(Pivot, T, {[], []}),
qsortp(Lo, [Pivot | qsortp(Hi, Suffix)]);

qsortp([], Suffix) -> Suffix.

partition(Pivot, [], {Lo, Hi}) -> {Lo, Hi};
partition(Pivot, [H | T], {Lo, Hi}) ->

if H < Pivot -> partition(Pivot, T, {[H | Lo], Hi});
true -> partition(Pivot, T, {Lo, [H | Hi]})

end.

Let’s try it.
with comprehensions: mean = 9.180e-3, std = 5.090-4
plain quicksort: mean = 6.372e-3, std = 4.920-4

Now, the hand-coded version is ∼45% faster.
I But the list-comprehension version is easier to write and read.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 10 / 18

Parallel Count3’s (version 1)

sum

root process

worker 1

worker 2

worker 3

worker 4

done

create random

lists.

send acks

to root

each worker

counts its 3’s

and sends tally

to root.

root

performs

final

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 11 / 18

Parallel Count3’s (the code)

count3s(W, Key) ->
lists:sum(workers:retrieve(W,

fun(ProcState) ->
case workers:get(ProcState, Key) of

undefined -> failed;
X -> count3s:count3s(X)

end
end)).

test(N, NWorkers) ->
W = workers:create(NWorkers),
rlist(W, N, 10, ’R’), % make random lists
workers:retrieve(W, fun() -> ok end), % sync
N3S = count3s(W, ’R’), % count the 3’s
workers:reap(W), % clean-up
N3S.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 12 / 18

The Workers Module

Create and manage a pools of processes.
workers:create(N) – create a pool of N worker processes.
workers:reap(W) – terminate the processes in pool W.
workers:broadcast(W, F) – each worker in W executes
function F.

I workers:retrieve(W, Key) – retrieve the values associated
with Key in each of the worker processes, and return these values
as a list.

F workers:retrieve(W, Fun, Args) – retrieves the value
obtained by executing Fun in each process with the corresponding
element from Args.

F workers:retrieve(W, Fun) – retrieves the value obtained by
executing Fun in each process without any arguments.

see the on-line documentation for more details.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 13 / 18

Performance

0 200K 400K 600K 800K 1M
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

input size

tim
e

(s
ec

.)

Nproc=1
Nproc=2, speed up= 1.8
Nproc=4, speed up= 3.0
Nproc=8, speed up= 5.7

0 10K 20K 30K 40K 50K
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

input size

tim
e

(s
ec

)

Parallel execution: 8 processes on quad-core i7

Speed-up calculated for N = 1M point (of course).
The parallel version is faster, but

I there’s a lot of overhead!

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 14 / 18

The Overhead

total

donestart

160 170 (microseconds)

time

150110 120 130 14060 70 80 90 1005010 20 30 400

root process

worker 1

worker 2

worker 3

worker 4

request counts

from workers

workers counting

send results back

to root.

root computes

The biggest overhead is the thread scheduler (OSX).
Many cores are idle while there are threads waiting for work.
The scheduler is trying to avoid unneccessary thread migration.
Similar results when running under linux.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 15 / 18

The Reduce Operator

Count3’s is a simple example of a common pattern in parallel
computation: reduce.

I A large vector, array, or other data structure is distributed across
many workers.

I Each worker computes a “tally” of its part of the data.
I The tally values are combined using some associative operator to

produce the final result.
Examples:

I Compute the sum of the elements of an array.
I Find the largest element in an array.
I Find the largest element in an array and its index.
I Find the first occurrence of Key in an array.

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 16 / 18

Reduce

combine

startP0

P1

P2

P3

P4

P5

P6

P7

done

local tally combine combine

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 17 / 18

Summary

Library modules for parallel programming with Erlang
I time it: measure elapsed time for computations.
I workers: create and use pools of worker processes.

Example: count3s
I Can you explain the observed performance loss using the kinds of

losses described in the September 18 lecture?

Mark Greenstreet Quantifying Performance CpSc 418 – Sept. 20, 2012 18 / 18

