Performance Losses

Mark Greenstreet

CpSc 418 — Sept. 18, 2012

Ouitline:
@ Measuring Performance
@ Count 3’s performance

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 1/29

Parallel Programming and Performance

@ The main motivation for parallel programming is performance
» Time: make a program run faster.
» Space: allow a program to run with more memory.

@ To make a program run faster, we need to know how fast it is
running.

@ There are many possible measures:

» Latency: time from starting a task until it completes.

» Throughput: the rate at which tasks are completed.
» Key observation:

1

throughput , sequential programmin
ghp tency’ Scduential prog g
throughput > Tatency’ parallel programming

CpSc 418 — Sept. 18, 2012 2/29

Speed-Up

@ Simple definition:

time(sequential — execution)

speed —up =

time(parallel — execution)

@ But beware of the spin:

» Is “time” latency or throughput?

» How big is the problem?

» What is the sequential version:
* The parallel code run on one processor?
* The fastest possible sequential implementation?
* Something else?

@ More practically, how do we measure time?

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 3/29

Time complexity

@ What is the time complexity of sorting?

» What are you counting?
» Why do you care?

@ What is the time complexity of matrix multiplication?

» What are you counting?
» Why do you care?

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 4/29

Big-O and Wall-Clock Time

@ In our algorithms classes, we count “operations” because we have some
belief that they have something to do with how long the actual program
will take to execute.

» Or maybe not. Some would argue that we count “operations”
because it allows us to use nifty techniques from discrete math.

» [I'll take the position that the discrete math is nifty because it tells us
something useful about what our software will do.

@ In our architecture classes, we got the formula:

inst. ted 1 instructi
time (#inst. executed) * (cycles/instruction)

clock frequency

@ The approach in algorithms class of counting comparisons or
multiplications, etc., is based on the idea that everything else is done in
proportion to these operations.

@ BUT, in parallel programming, we can find that a communication
between processes can take 1000 times longer than a comparison or
multiplication.

» The may not matter if you're willing to ignore “constant factors.”
» In practice, factors of 1000 are too big to ignore.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 5/29

Causes of Performance Loss

@ Ideally, we would like a parallel program to run P times faster than
the sequential version when run on P processors.
@ In practice, this rarely happens because of:
» Overhead: work that the parallel program has to do that isn’t
needed in the sequential program.
» Non-parallelizable code: something that has to be done
sequentially.
» |dle processors: There’s work to do, but some processor are
waiting for something so before they can work on it.
» Resource contention: Too many processors overloading a limited
resource.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 6/29

Communication Overhead

@ In a parallel program, data must be sent between processors.
@ This isn’t a part of the sequential program.
@ The time to send and receive data is overhead.

@ Communication overhead occurs with both shared-memory and
message passing machines and programs.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 7129

Communication with shared-memory

@ In a shared memory architecture:

» Each core has it's own cache.

» The caches communicate to make sure that all references from
different cores to the same address look like their is one, common
memory.

» |t takes longer to access data from a remote cache than from the
local cache. This creates overhead.

@ False sharing can create communication overhead even when
there is no logical sharing of data.

» This occurs if two processors repeatedly modify different locations
on the same cache line.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 8/29

Communication overhead with message passing

@ The time to transmit the message through the network.

@ There is also a CPU overhead: the time set up the transmission
and the time to receive the message.

@ The context switches between the parallel application and the
operating system adds even more time.

@ Note that many of these overheads can be reduced if the sender
and receiver are different threads of the same process running on
the same CPU.

» This has led to SMP implementations of Erlang, MPI, and other
message passing parallel programming frameworks.

» The overheads for message passing on an SMP can be very close
to those of a program that explicitly uses shared memory.

» This allows the programmer to have one parallel programming
model for both threads on a multi-core processor and for multiple
processes on different machines in a cluster.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 9/29

Synchronization Overhead

@ Parallel processes must coordinate their operations.
» Example: access to shared data structures.
» Example: writing to a file.

@ For shared-memory programs (e.g. pthreads or Java
threads, there are explicit locks or other synchronization
mechanisms.

@ For message passing (e.g. Erlang or MPI), synchronization is
accomplished by communication.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 10/29

Computation Overhead

@ Computation: a parallel program may perform computation that is
not done by the sequential program.

» Redundant computation: it's faster to recompute the same thing on
each processor than to broadcast.

» Algorithm: sometimes the fastest parallel algorithm is
fundamentally different than the fastest sequential one, and the
parallel one performs more operations.

@ Memory: The total memory needed for P processes may be
greater than that needed by one process due to replicated data
structures and code.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 11/29

Sieve or Eratosthenes

To find all primes < N:

1. Let MightBePrime = [2, 3, ..., N].
2. Let KnownPrimes = [].
3. while (MightBePrime # []) do

Loop invariant: KnownPrimes contains all primes less than the
smallest element of MightBePrime, and MightBePrime
is in ascending order. This ensure that the first element of
MightBePrime is prime.

Let P = firstelement of MightBePrime.

Append P to KnownPrimes.

Delete all multiples of P from MightBePrime.
end

o° o° o o

Sw w w
w N

See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 12/29

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Prime-Sieve in Erlang

% primes (N): return a list of all primes < N.
primes (N) when is_integer (N) and (N < 2) -> [];
primes (N) when is_integer (N) ->

do_primes([], lists:seqg(2, N)).

invariants of do_primes(Known, Maybe):

All elements of Known are prime.

No element of Maybe is divisible by any element of Known.

lists:reverse (Known) ++ Maybe isan ascending list.

Known ++ Maybe contains all primes < N, where N is from p (N) .
do_primes (KnownPrimes, []) -> lists:reverse (KnownPrimes);
do_primes (KnownPrimes, [P | Etc]) ->
do_primes ([P | KnownPrimes],
lists:filter (fun(E) -> (E rem P) /= 0 end, Etc)).

o o° d° o o

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 13/29

A More Efficient Sieve

@ If N is composite, then it has at least one prime factor that is at
most v/N.

@ This means that once we've found a prime that is > v/N, all
remaining elements of Maybe must be prime.

@ Revised code:

% primes (N):return a list of all primes < N.
primes (N) when is_integer (N) and (N < 2) -> [];
primes (N) when is integer (N) ->
do_primes([], lists:seq(2, N), trunc(math:sqgrt(N))).

do_primes (KnownPrimes, [P | Etc], RootN)
when (P =< RootN) ->
do_primes ([P | KnownPrimes],

lists:filter (fun(E) —> (E rem P) /=0end, Etc), RootN);
do_primes (KnownPrimes, Maybe, _RootN) ->
lists:reverse (KnownPrimes, Maybe).

@ If you prefer Java or C, see slide 29.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 14/29

Prime-Sieve: Parallel Version

@ Main idea

» Find primes from 1...v/N.
» Divide VN + 1... N evenly between processors.
» Have each processor find primes in its interval.

@ We can speed up this program by having each processor compute
the primes from 1...v/N?
» Why does doing extra computation make the code faster?

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 15/29

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012

Overhead: Summary

Overhead is loss of performance due to extra work that the parallel
program does that is not performed by the segential version. This
includes:

@ Communication: parallel processes need to exchange data. A
sequential program only has one process; so it doesn’t have this
overhead.

@ Synchronization: Parallel processes may need to synchronize to
guarantee that some operations (e.g. file writes) are performed in
a particular order. For a sequential program, this ordering is
provided by the program itself.

@ Extra Computation:

» Sometimes it is more efficient to repeat a computation in several
different processes to avoid communication overhead.

» Sometimes the best parallel algorithm is a different algorithm than
the sequential version and the parallel one performs more
operations.

@ Extra Memory: Data structures may be replicated in several
different processes.

16/29

Non-parallelizable Code

@ Finding the length of a linked list:
int length=0;
for(List p = listHead; p != null; p = p->next)
length++;

» Must dereference each p—>next before it can dereference the next

one.
» Could make more parallel by using a different data structure to
represent lists (some kind of skiplist, or tree, etc.)

@ Searching a binary tree
» Requires 2% processes to get factor of k speed-up.

» Not practical in most cases.
» Again, could consider using another data structure.

@ Interpretting a sequential program.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 17/29

Amdahl’s Law

@ Given a sequential program where

» fraction s of the execution time is inherently sequential.
» fraction 1 — s of the execution time benefits perfectly from speed-up.

@ The run-time on P processors is:

1—s
Toaratlel = Tsequential * (S + P)

@ Consequences:
» Define
speed —up = Tsequential
Tparallel
» Speed-up on P processors is at most 15
» Gene Amdahl argued in 1967 that this limit means that parallel
computers are only useful for a few special applications where s is
very small.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 18/29

Amdahl’s Law, 45 years later

@ Amdahl’s law is an economic law, not a physical law.
» Amdahl’s law was formulated when CPUs were expensive.
» Today, CPUs are cheap

* The cost of fabricating eight cores on a die is very little more that the
cost of fabricating one.

* Computer cost is dominated by the rest of the system: memory, disk,
network, monitor, . ..

@ Amdahl’s law assumes a fixed problem size ...

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 19/29

Amdahl’s Law, 44 years later

@ Amdahl’s law is an economic law, not a physical law.

» Amdahl’s law was formulated when CPUs were expensive.
» Today, CPUs are cheap (see previous slide)

@ Amdahl’s law assumes a fixed problem size

» Many computations have s (sequential fraction) that decreases as
N (problem size) increases.
» Having lots of cheap CPUs available will
* Change our ideas of what computations are easy and which are hard.
* Determine what the “killer-apps” will be in the next ten years.
e Ten years from now, people will just take it for granted that
most new computer applications will be parallel.
» Examples:
* Managing/searching/mining massive data sets.
* Scientific computation.
¢ Note that most of the computation for animation and render-
ing resembles scientific computation. Computer games ben-

efit tremendously from parallelism.
e Likewise for multimedia computing.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 20/29

Software is Expensive

@ On the previous slide, | noted that CPUs are essentially free.
» But programming them isn’t.

@ Hardware is already free.
» Software is the problem.

@ The challenge in exploiting parallelism is a software problem.

» We need to understand the architectural issues so we can develop
programming abstractions that match performance reality.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 21/29

Overhead: Idle CPUs

There are idle processors and work to do, but the processors can’'t do
the work, because:

@ Load imbalance:
» A few processors get tasks that take longer than the others.
» This is especially a problem if it'’s hard to determine how long a task
will take without running it.

@ Start-up and ending costs
» Some problems start with one process that spawns tasks for other
processors to execute.
» Initially, the other processors are idle, waiting for the first processor
to spawn tasks.
» A similar problem can occur collecting results at the end.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 22/29

Contention

Multiple processors need the same resource.
@ Disk access.
@ Main memory access with a SMP.
@ Network access with a cluster.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 23/29

On a really good day, you win

@ Embarrassingly parallel applications
» Problems that can run nearly independently on a large number of
processors.
» Monte Carlo simulations, ray tracing, factoring huge numbers, ...
@ Superlinear speed-up
» Occasionally, a parallel program with P processors is more than P
times faster than the sequential version.
* More, fast memory:
multiple CPUs have more total registers, more cache memory, more
I/0 bandwidth, etc.
* A different algorithm:
e The natural parallel algorithm may visit a data structure in a
different order than the sequential algorithm.
e This can, for example, result in faster pruning for a search for
some applications.
e If the sequential version is modified to do the same thing, it
may be too complicated, resulting in sequential overhead.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 24/29

Lecture Summary

Causes of Performance Loss in Parallel Programs
@ Overhead
» Communication, slide 7.
» Synchronization, slide 10.
» Computation, slide 11.
» Extra Memory
@ Other sources of performance loss
» Non-parallelizable code, slide 17
» ldle Processors, slide 22.
» Resource Contention, slide 23.
@ Quantifying speed-up, slide 3
» Amdahl’'s Law, slide 19.
» Super-Linear Speed-up, slide 24
and “embarrassingly parallel” applications.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 25/29

Supplementary Material

@ The time_ it module.
@ The sieve of Eratosthenes in Java/C.

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 26/29

The time it module

@ | wrote some erlang functions for measuring the time it takes a
function to execute.

@ These functions are available at
http://www.ugrad.cs.ubc.ca/~cs418/2012-1/src/erl/source.html
@ Most of what you need:

» time_it:t (Fun, N), forinteger N returns the mean and
standard deviation of the execution time for N trials of executing
Fun ().

» time_it:t (Fun, T), forfloating point number T returns the
mean and standard deviation by repeatedly executing Fun () until a
total of T seconds have elapsed.

» time_it:t (Fun), equivalentto time_it:t (Fun, 1.0).

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 27/29

http://www.ugrad.cs.ubc.ca/~cs418/2012-1/src/erl/source.html

time_it Example

1> R1K = lists:map(fun(_) —-> random:uniform() end,
lists:seqg(l, 1000)), ok.

ok
2> code:add path("/home/c/csd418/public_html/src/erl").

true
3> time_it:t (fun() -> hw2:max_hr (R1K) end).
[{mean, 3.553738450603681e-5},{std, 6.529345227998487e-6}]

Mark Greenstreet Performance Losses CpSc 418 — Sept. 18, 2012 28/29

Prime-Sieve: Java/C version

% Sieve of Eratosthenes
int primes|[N];

primes[0] = 0; primes[l] = 0;
for(int i = 2; i < N; i++)

primes[i] = 1; % assumed prime until proven composite
int lastp = 1; % look for primes starting at lastp+1
int top = sqgrt (N); % any composite < N has a factor < top
while (lastp < top) {

int p; % next line sets p to next prime

for(p = lastpt+l; (p < N) && (primes[p] == 0); pt++);

for(c = 2%p; ¢ < N; c += p)

primes([c] = 0; % cisamultiple of p, hence composite
lastp = p;

%

that’s it!

Mark Greenstreet Performance Losses

CpSc 418 — Sept. 18, 2012 29/29

