
Parallel Computation

Mark Greenstreet

CpSc 418 – Sept. 6, 2012

Outline:
Why Does Parallel Computation Matter?
Course Overview
Our First Parallel Program
The next few weeks

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 1 / 26

The Clock Plateau

1985 1990 1995 2000 2005 2010
Year

10

100

1,000

10,000

100,000

C
lo

ck
 F

re
qu

en
cy

 (
M

H
z)

3.9GHz

127GHz
Sept. 6, 2012

Clock Speed of Intel Processors vs. Year Released[Intel, 2011]

No significant changes since 2003.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 2 / 26

Power is the Problem

1990 2000 2010

100MHz

 1GHz

 10GHz

year

cl
oc

k
fre

qu
en

cy

single core

double core

triple core

quad core

hex core

3.3GHz

20
03

51% annual clock freq. growth

0

30

60

90

120

150

po
w

er
 c

on
su

m
pt

io
n

(w
at

ts
)

Clock Speed and Power of Intel Processors vs. Year
Released[Wikipedia CPU-Power, 2011]

Designs have been power-constrained since about 2003.
Once power was taken into account, lower power processors have
been produced.
Multi-core now is the dominant CPU paradigm.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 3 / 26

More Problems

The memory bottleneck.
Limited instruction-level-parallelism.
Design complexity.
Reliability.
See [Asanovic et al., 2006].

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 4 / 26

Processor Design Trade-Offs

0 2 4 6 8 100

2

4

6

8

10
design for max single thread performance

de
sig

n
fo

r m
in

 e
ne

rg
y

opportunity for parallel computing

Time/Operation

En
er

gy
/O

pe
ra

tio
n

Energy vs. Time Trade-Offs (idealized).

If single-thread performance is the primary concern,
then CPU designers push against the power-limit for cooling the
chip.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 5 / 26

Processor Design Trade-Offs

0 2 4 6 8 100

2

4

6

8

10
design for max single thread performance

de
sig

n
fo

r m
in

 e
ne

rg
y

opportunity for parallel computing

Time/Operation

En
er

gy
/O

pe
ra

tio
n

Energy vs. Time Trade-Offs (idealized).

If minimizing energy consumption (e.g. maximizing battery life) is
the primary concern,
then CPU designers aim for the minimum performance that
completes the required computation in time.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 5 / 26

Processor Design Trade-Offs

0 2 4 6 8 100

2

4

6

8

10
design for max single thread performance

de
sig

n
fo

r m
in

 e
ne

rg
y

opportunity for parallel computing

Time/Operation

En
er

gy
/O

pe
ra

tio
n

Energy vs. Time Trade-Offs (idealized).

Parallel computing allows us to use more, slow processors to get
the same task done using less time and less energy than a
sequential version.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 5 / 26

Trading Energy and Time

Computations take less energy when they are done slower.
Simple model: Energy · Time = Constant
Consider a task that requires energy E and time T .

I If we can break the task into two equal pieces, each requiring
energy E/2 and time T/2,

I Then, we could do the problem in parallel using total energy E and
time T/2.

I Or, we could do each of the smaller tasks on a processor running at
half the speed as the original.

F Now, the energy for each task is E/4.
F The total energy is E/2.
F And the time is T .

We can save time and/or energy by using parallel computation.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 6 / 26

Parallel Computing Solves Other Problems Too!

The memory bottleneck
I It is much easier to increase memory bandwidth than it is to

decrease memory latency.
I Many slow CPUs can have references in progress at the same time

to high-latency, high-bandwidth memory. A single CPU would stall.
Limited instruction-level-parallelism.

I Exploit explicit parallelism instead.
I BUT, the programmer has to write parallel code.

Design complexity.
I It’s much easier to design a CPU chip with many copies of the

same, simple CPU than with one big, complicated CPU.
Reliability.

I Many core designs have built-in redundancy.
I E.g., nVidia Fermi GPUs have 512 shaders, but only expose 448 or

480 to the programmer.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 7 / 26

Parallel Computing is Everywhere

Multicore desktop machines
iPad3: dual-core ARM + dual GPUs + dedicated image processor
+ . . .
Tegra 3 (smart phone chip set): quad-core ARM + GPU + . . .
GPU: hundreds to thousands of programmable shaders.
Clouds
Embedded computing: automotive, medical, appliances, all kinds
of other gadgets.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 8 / 26

Outline

Why Does Parallel Computation Matter?
Course Overview

I Syllabus
I The instructor, TA, text, . . .
I Plagiarism
I Bug bounties

Our First Parallel Program

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 9 / 26

Syllabus

September
I Parallel Programming in Erlang
I Basic algorithms and parallel programming techniques

October
I Architectures for Parallel Computers
I Performance Analysis: principles and measurements
I Midterm: October 18, 2012 – in class

November
I Parallel Programming Paradigms:

F message passing: MPI
F threads: pthreads and/or Java threads

I Applications of Parallel programming

For the complete (but subject to revision) version see:
http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/syllabus.html

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 10 / 26

http://www.ugrad.cs.ubc.ca/~cs418/2012-1/syllabus.html

Administrative Stuff – Who

The instructor
I Mark Greenstreet, mrg@cs.ubc.ca
I ICICS/CS 323, (604) 822-3065
I Office hours: Thursdays, 11:30am-12:30pm

F Office hours will change if the proposed time doesn’t work for many
students in the class,

F or if I end up with another meeting scheduled at that time.
F You can always send me e-mail to make an appointment.

The TA
I Mike Enescu, menescu@cs.ubc.ca
I Office hours: Mondays, 11:00am-12:30pm., location TBA.

Course webpage: http://www.ugrad.cs.ubc.ca/˜cs418.
Online discussion group: on piazza (how do I give that a url?)

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 11 / 26

http://www.ugrad.cs.ubc.ca/~cs418

Administrative Stuff – What

The book: “Principles of Parallel Programming”
Calvin Lin and Lawrence Snyder

web: http://www.ugrad.cs.ubc.ca/˜cs418

Grades:
Homework: 35% roughly one assignment every two weeks
Midterm: 25% October 18, in class
Final: 40%

Should programming be done as pairs?
Class vote.

Homework late policy:

I Homework N due one week after homework N + 1 assigned. No
late homework accepted.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 12 / 26

http://www.ugrad.cs.ubc.ca/~cs418

Plagiarism

I have a very simple criterion for plagiarism:
Submitting the work of another person, whether that be another student,
something from a book, or something off the web and representing it as your
own is plagiarism and constitutes academic misconduct.

If the source is clearly cited, then it is not academic misconduct.
If you tell me “This is copied word for word from Jane Foo’s solution” that is not
academic misconduct. It will be graded as one solution for two people and each
will get half credit. I guess that you could try telling me how much credit each of
you should get, but I’ve never had anyone try this before.

I encourage you to discuss the homework problems with each other.
If you’re brainstorming with some friends and the key idea for a solution comes
up, that’s OK. In this case, add a note to your solution that lists who you
collaborated with.

More details at:
I http://www.ugrad.cs.ubc.ca/˜cs418/plagiarism.html
I http://learningcommons.ubc.ca/guide-to-academic-integrity/

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 13 / 26

http://www.ugrad.cs.ubc.ca/~cs418/plagiarism.html
http://learningcommons.ubc.ca/guide-to-academic-integrity/

Bug Bounties

If I make a mistake when stating a homework problem, then the
first person to report the error gets extra credit.

I If the error would have prevented solving the problem, then the
extra credit is the same as the value of the problem.

I Smaller errors get extra credit in proportion to their severity.

Likewise, bug bounties are awarded (as homework extra credit) for
finding errors in lecture slides, the course web-pages, code I
provide, etc.
The midterm and final have bug bounties awarded in midterm and
final exam points respectively.
If you find an error, report it.

I Suspected errors in homework, lecture notes, and other course
materials should be posted to piazza.

I The first person to post a bug gets the bounty.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 14 / 26

Outline

Why Does Parallel Computation Matter?
Course Overview
Our First Parallel Program

I Count 3’s in Java
I Erlang quick start
I Sequential erlang version
I First parallel version
I Second parallel version

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 15 / 26

Count 3’s in Java

int count3s(int[] data) {
int count = 0;
for(int i = 0; i < data.hi; i++)

if(data[i] == 3)
count++;

return(count);
}

Erlang:
count3s([]) -> 0;
count3s([3 | Tail]) -> 1 + count3s(Tail);
count3s([Other | Tail]) -> count3s(Tail).

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 16 / 26

Erlang Intro – very abbreviated!

Erlang is a functional language:
I The main data structures are lists, [Head | Tail], and tuples

(covered later).
I Extensive use of pattern matching.

count3s([]) -> 0;
An empty list, [], contains 0 threes.
count3s([3 | Tail]) -> 1 + count3s(Tail);
A list whose first element is a 3 contains one more three than the
rest of the list.
count3s([Other | Tail] -> count3s(Tail);
A list whose first element is not a 3 contains the same number of
threes as the rest of the list.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 17 / 26

Pattern Matching

count3s([]) -> 0;
count3s([3 | Tail]) -> 1+count3s(Tail);
count3s([Other | Tail]) -> count3s(Tail).

If a constant (e.g. [] or 3) appears in a pattern, then it matches
any expression that evaluates to that value.
If an unbound variable (e.g. Tail) appears in a pattern, then it
matches any expression. This binds the value of the expression to
the variable, and the variable becomes bound.
If a bound variable appears in a pattern, then it matches any
expression that evaluates to the same value as the one bound to
the variable.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 18 / 26

Pattern Matching

count3s([]) -> 0;
count3s([3 | Tail]) -> 1+count3s(Tail);
count3s([Other | Tail]) -> count3s(Tail).

In Erlang, variable names begin with upper-case letters. Identifiers
starting with lower-case letters are constants called ’atoms’. An
identifier that starts with an underscore indicates that the value will
not be used and avoids compiler warnings about variables whose
values are never used.
Examples:

I [3 | Tail] matches any non-empty list whose first element is 3.
The rest of the list is bound to Tail.

I [Other | Tail] matches any non-empty list. The first element
of the list is discarded, and the rest of the list is bound to Tail.

If multiple patterns match an expression, then the first match is
selected.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 18 / 26

Let’s try it!

-module count3s.
-export [count3s/1, rlist/1, rlist/2].

% count3s: return the number of 3’s in a list.
count3s([]) -> 0;
count3s([3 | Tail]) -> 1 + count3s(Tail);
count3s([Other | Tail]) -> count3s(Tail).

% rlist: return a list of N random digits, each selected from 1..M
rlist(0, M) -> [];
rlist(N,M) -> [random:uniform(M) | rlist(N-1,M)].

% list of N random digits selected from 1..10
rlist(N) -> rlist(N, 10).

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 19 / 26

Running Erlang

bash-3.2$ erl Erlang R14B03 (erts-5.8.4) [source]
[smp:8:8] [rq:8] [async-threads:0] [hipe]
[kernel-poll:false]

Eshell V5.8.4 (abort with ∧G)
1> c(count3s).
{ok,count3s}
2> L20 = count3s:rlist(20,5).
[1,3,4,5,3,2,3,5,4,3,3,1,2,4,1,3,2,3,3,1]
3> count3s:count3s(L20).
8
4> count3s:count3s(count3s:rlist(1000000,10))).
99961
5> q().
ok
7> bash-3.2$

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 20 / 26

First Parallel Version

-module count3s p1.
-export [count3s/1, count3s/2, childProc/2].

% count3s: return the number of 3’s in a list.
count3s(L0, N0, 1, MyPid) -> % 1 processor

count3s:count3s(L0); % just do it.
count3s(L0, N0, NProcs, MyPid) -> % > 1 processor.

% spawn a process to handle the first N/NProcs elements of L.
% make a recursive call with NProcs-1 to handle the rest.
N1 = N0 div NProcs,
N2 = N0 - N1,
{L1, L2} = lists:split(N1, L0),
spawn(count3s p1, childProc, [L1, MyPid]),
C2 = count3s(L2, N2, NProcs-1, MyPid),
receive % get a value from a child process, and add it to C2.
{count3s, C1} -> C1 + C2

end.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 21 / 26

First Parallel Version (cont.)

% versions of count3s that fill in default arguments.
count3s(L, NProcs) ->

count3s(L, length(L), NProcs, self()).
count3s(L) ->

count3s(L, erlang:system info(schedulers)).

childProc(L, ParentPid) ->
ParentPid ! count3s, count3s:count3s(L).

Time to run sequential version on list with 1,000,000 elements:
13.8.

Time to run parallel version on list with 1,000,000 elements:
51.3ms.

Parallel programming achieves a 71% slow down!
I Why?

Because Erlang copies the arguments for child processes. /

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 22 / 26

Second Parallel Version

[1] Create NProcs worker processes.
[2] Each worker process generates Nelements/Nprocs random values.
[3] The root process asks each worker to send back the

number of 3’s in it’s portion of the values.
[4] The root process computes the sum of these values.

I measured the time to count the 3’s as the time for steps [3] and
[4] above.
Time to run the second parallel version on a list with 1,000,000
elements:

2.5ms.
Parallel programming achieves a 5.5x speed up.

I Pretty good for a quad-core machine!
I > 4x speed-up do to multi-threading.
I To get the code, go to

http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/lecture/09.06/code.html

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 23 / 26

http://www.ugrad.cs.ubc.ca/~cs418/2012-1/lecture/09.06/code.html

More Erlang Stuff

Tutorial
http://www.erlang.org/doc/getting_started/users_guide.html

Erlang Language Manual
http://www.erlang.org/doc/reference_manual/users_guide.html

Erlang Library Documentation
http://www.erlang.org/doc/man_index.html

The book: Programming Erlang: Software for a Concurrent World,
Joe Armstrong, 2007,
http://pragprog.com/book/jaerlang/programming-erlang

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 24 / 26

http://www.erlang.org/doc/getting_started/users_guide.html
http://www.erlang.org/doc/reference_manual/users_guide.html
http://www.erlang.org/doc/man_index.html
http://pragprog.com/book/jaerlang/programming-erlang

Preview of the next few weeks

September 11: Introduction to Erlang
Homework: Homework 1 goes out
Reading: Lin & Snyder, chapter 1

September 13: More Erlang

September 18: Quantifying Performance
Reading: Lin & Snyder, chapter 3, pp. 61–68

September 20: Matrix multiplication – algorithms
Homework: Homework 2 goes out – parallel programming with Erlang
Reading: Lin & Snyder, chapter 3, pp. 68–77
Homework: Homework 1 deadline for early-bird bonus

September 25: Matrix Multiplication – performance
Reading: Lin & Snyder, chapter 3, pp. 77–85
Homework: Homework 1 due

September 27: Superscalars and compilers
Reading: The MIPS R10000 Superscalar Microprocessor (Yeager)

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 25 / 26

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491460&tag=1

Bibliography

Krst Asanovic, Ras Bodik, et al.
The landscape of parallel computing research: A view from Berkeley.
Technical Report UCB/EECS-2006-183, Electrical Engineering and Computer Science
Department, University of California, Berkeley, December 2006.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf.

Microprocessor quick reference guide.
http://www.intel.com/pressroom/kits/quickrefyr.htm, June 2011.
accessed 26 July 2011.

List of CPU power dissipation.
http://en.wikipedia.org/wiki/List_of_CPU_power_dissipation, April 2011.

accessed 26 July 2011.

Mark Greenstreet Parallel Computation CpSc 418 – Sept. 6, 2012 26 / 26

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.intel.com/pressroom/kits/quickrefyr.htm
http://en.wikipedia.org/wiki/List_of_CPU_power_dissipation

