Extra credit: 65 points

Please submit your solution using the handin program as: cs418 hw5
Your submission should consist of the following files:
hw5.c-C source (ASCII text). All functions requested in this assignment must be exported by this module.
hw5.txt - plain, ASCII text, or hw5.pdf - PDF.

1. Count 3's with pthreads ($\mathbf{4 0}$ points)

Write an implementation of count3's using pthreads on gambier. Illustrate each of the issues described in Lin and Snyder:
(a) A race that results in the wrong answer. ($\mathbf{1 0}$ points)
(b) Excessive locking that results in poor performance. (10 points)
(c) False sharing that results in poor performance. ($\mathbf{1 0}$ points)
(d) A good implementation that results in good speed-up. (10 points)

Draw a plot of speed-up versus number of processors for the last three versions.

2. Correctness of bitonic sort ($\mathbf{2 5}$ points)

Let $x_{0}, x_{1}, \ldots x_{n-1}$ be a bitonic sequence. Let $y_{0}, y_{1}, \ldots y_{n-1}$ be defined by:

$$
\begin{aligned}
y_{i} & =\min \left(x_{i}, x_{i+\lceil n / 2\rceil}\right), & & \text { if } i<(n-1) / 2 \\
& =x_{i}, & & \text { if } i=(n-1) / 2 \\
& =\max \left(x_{i}, x_{i-\lceil n / 2\rceil}\right), & & \text { if } i>(n-1) / 2
\end{aligned}
$$

(a) (5 points) Show that the sequence $y_{0}, \ldots y_{\lfloor(n-1) / 2\rfloor}$ is bitonic.
(b) (5 points) Show that the sequence $y_{\lceil(n-1) / 2\rceil} \ldots y_{n-1}$ is bitonic.
(c) $\left(5\right.$ points) Show that for every $i \in 0 \ldots\lfloor(n-1) / 2\rfloor$ and every $j \in\lceil(n-1) / 2\rceil \ldots(n-1), y_{i} \leq y_{j}$.
(d) ($\mathbf{5}$ points) Given an intuitive explanation for how the results in the previous three sub-problems can be used to show that a bitonic merge produces a sorted output sequence from two input sequences that are sorted in opposite directions.
(e) (5 points) Now that you've argued that bitonic merge is correct, explain why this makes the entire bitonic sorting algorithm correct.

A few hints:

- Use the 0-1 principle: you only need to consider sequences that consist only of 0's and 1's.
- Consider two cases:
- The total number of 1 's is less than or equal to $n / 2$.
- The total number of 1 's is greater than $n / 2$.
- All of the floor and ceiling stuff is to show that bitonic merge works whether n is even or odd. I also think it's kind of cool what it shows about the element in the middle when n is odd. On the other hand, if the floors and ceilings make you dizzy, then assume n is even, and then each of first three sub-parts will be worth 4 points instead of 5 . In this case, you'll get:

$$
\begin{aligned}
y_{i} & =\min \left(x_{i}, x_{i+(n / 2)}\right), & & \text { if } i<n / 2 \\
& =\max \left(x_{i}, x_{i-(n / 2)}\right), & & \text { if } i \geq n / 2
\end{aligned}
$$

and you'll need to show:
(a) (4 points) the sequence $y_{0}, \ldots y_{(n / 2)-1}$ is bitonic.
(b) (4 points) the sequence $y_{n / 2} \ldots y_{n-1}$ is bitonic.
(c) (4 points) for every $i \in 0 \ldots(n / 2)-1$ and every $j \in n / 2 \ldots(n-1), y_{i} \leq y_{j}$.
(d) $\mathbf{5}$ points) same as above.
(e) (5 points) same as above.

