CpSc 418 Homework 4 Due: Nov. 30, 2012, 11:59pm

5% extra credit if solution submitted by 11:59pm on Nov. 27.

Please submit your solution using the handin program as:
cs418 hw4
Your submission should consist of the following files:

hwd .erl — Erlang source (ASCII text). All functions requested in this assignment must be exported by this module.
hwd . c — C source (ASCII text). All functions requested in this assignment must be exported by this module.

hwd . txt — plain, ASCII text, or hw4 . pdf — PDF.

1. Reduce and Scan (75 points)
Implement each of the operations below using Erlang (with the wt ree module) and MPI (using MPI_Reduce,
MPI_Scan,and MPI_Op_create).

(a) Find element. (25 points)

i. Draw a picture. (5 points)
Given an array, A, of IV elements, and a special value, ¢, define

{first,last} = index(q, A)

Where first is the smallest integer, ¢ € 1,..., N such that A; = ¢, and last is the largest integer in
1€ 1,..., N such that A; = q. If no element of A is equal to g, then first is +00, and last is —oco.
For example, if

A = [1,2,2,4,2,6,2,4,6,2,6,4,2,4,6, 6]

and {first, last} = index(4, A), then first = 4 and then last = 14. Draw a diagram that shows how
this computation can be performed using a reduce operation with four processes where each process
initially holds four consecutive elements of A. You can draw your diagram neatly by hand, scan it,
and include it in hw4 . pd £, or you can draw it using a drawing program of your choice, export it as a
PDF file, and include it in hw4 . pdf.

ii. Erlang version: (10 points)
hw4:index (W, KeyhA, Q) —> {First, Last}

e W is a worker pool.
e KevyA is the key for the source list.
e O is value to search for in the list.

First and Last are set to the indices of the first and last occurrences of Q in the distributed list
associated with KeyA. If Q does not occur in this list, then the atom unde fined is returned.

iii. MPI version: (10 points)

void first_last (int *src, int count, int g, int =xdst, int root, MPI_comm comm)

e src is a pointer to an array of count elements.
e g is the special value to search for.

e dst is a pointer to an array of 2 elements.

e comm is an MPI communicator

dst [0] gets the index of the first occurence of g in src, and dst [1] gets the index of the last
occurence of g in src. If g does not occur in src, both dst [0] and dst [1] are set to —1.

(b) Rolling average. (25 points)
i. Draw a picture. (5 points)
Given an array, A, of NV elements, the M-element rolling average of A is the array B where

k

Bk:% Z A;

i=max(1l,k—(M—1))

For example, if
A = [1,4,9,16,25,36,49,64],

and B is the 3-element rolling average of A, then
B = [1/3,5/3,14/3,29/3,50/3,77/3,110/3,149/3].

Draw a diagram that shows how this computation can be performed using a scan operation with four
processes where each process initially holds two consecutive elements of A, and each process will
hold two elements of B at the end of the reduce. You can draw your diagram neatly by hand, scan it,
and include it in hw4 . pd £, or you can draw it using a drawing program of your choice, export it as a
PDF file, and include it in hw4 . pdf.

ii. Erlang version: (10 points)
hwd4:rolling average (W, KeyA, KeyB, M)

e W is a worker pool.

KeyA is the key for the source list.

KeyB is the key for the result list.
e M a positive integer.
Compute the M-element rolling average of the distributed list associated with KeyA and store it as a
distributed list associated with KeyB.
iii. MPI version: (10 points)
void rolling average (double xsrc, double xdst, int count, int m, MPI_ comm comm)

e src is a pointer to an array of count elements.
e dst is a pointer to an array of count elements.
e m is a positive integer.
e comm is an MPI communicator.
Compute the m-element rolling average of the elements of src and store the result in dst.

(c) Credit Card balance (25 points) Consider a credit-card account that is opened on day 0 with a balance of
$0.00. Let T be a list of transactions, where each transaction is a tuple (d, v); d is an integer, the date on
which the transaction took place; and v is the amount of the transaction. If v is positive, it is a purchase,
which increases the balance owed on the account. If v is negative, it is a payment, which decreases the
balance owed. For any positive integer, n, we compute the balance on day n in two steps:

balance(0) = 0
balance(n) = (1+r)«* balance(n — 1) + Z a, the “true” balance
(n,a)eT
acctbal(n) = round(balance(d),0.01), rounded to the nearest penny

where r is the daily interest rate, and round(z, p) rounds z to the nearest multiple of p. Note that this
credit card pays interest if you’ve got a negative balance — don’t expect this for a reall credit card.

As an example, let
T = [(1,17.42),(2,5.00), (3,—20.00), (4,1.00), (4,12.34), (6, —20.00), (7,10.00), (10, 9.99)]

and » = 0.02 (a usurious rate, even for a credit card!). Letting B be the true balance following each
transaction, and A be the account balance. We get:

B = [17.42, 22.7684, 3.223768, 4.28824336, 16.62824336, —2.69997561, 7.24602488, 17.67953957]
A = [17.42, 22.77, 3.22, 4.29, 16.63, —2.70, 7.25, 17.68]

i. Draw a picture. (5 points)
Draw a diagram that shows how the computation of the account balance after each transaction can be
performed using a scan operation with four processes where each process initially holds two consecu-
tive elements of 7', and each process will hold two elements of B at the end of the scan. You can draw
your diagram neatly by hand, scan it, and include it in hw4 . pd £, or you can draw it using a drawing
program of your choice, export it as a PDF file, and include it in hw4 . pdf.

ii. Erlang version: (10 points)
hwéd:balance (W, KeyT, KeyB, Rate)

e W is a worker pool.
e KeyT is the key for the distributed list of transactions. This list is sorted in ascending order of
transaction date, and that each transaction is of the form {Date, Amount}.

e KeyB is the key for the result list.

e Rate is the daily interest rate (i.e. r in the problem statement).
Compute the after transaction balances for the transactions stored as the distributed list associated
with KeyT and store the resulta as a distributed list associated with KeyB. Of course, you can use
erlang’s floating-point arithmetic and will get a bit of floating-point round-off when computing the
“true” balance.

iii. MPI version: (10 points)

void balance (struct Transaction *tr, double *dst, int count, int m, MPI_ comm

comm)

e tr isapointer to an array of count transactions where
struct Transaction {
int date;
double amount;
}
e dst is a pointer to an array of count elements.
e comm is an MPI communicator
Compute after-transaction balances for the transactions stored as src and store the result in dst. Of
course, you can use double-precision arithmetic for your calculations and incur a bit of round-off error
when computing the “true” balance.

2. Test-and-set (30 points)
In class and on homework 3, we considered mutual exclusion algorithms for which the only atomic (i.e. indivis-
ible) operations were memory reads and memory writes. Modern machines provide other instructions, where a
simple one is tas (“test-and-set”). In particular,

tas $Rdst, SRptr

reads the memory location at the address given by register SRpt r, stores the value read in register $Rdst, and
sets the content of the memory location to 1.

remote write*, € I = invalid
update memory S = shared
E = exclusive
M = modified

write* = write—through
(to memory

remote read

write = write—back
(local—cache only)

* L OJIM [BOO] %,

€ = "spontaneous"
transition

Figure 1: The MESI Cache-Coherence Protocol

(a) Using tas for mutual exclusion (10 points)
Show that the following code guarantees mutual exclusion for N threads indicated by their respective
program counters, PCp, ..., PCx.

initially: flag = 0;
PC;=0: while(true) {

PC;=1: non-critical code
PC;=2: while(tas(&flag));
PC;=3: critical section
PC;=4: flag= false;
PC;=5: }

where tas (&flag) performs a test-and-set on address of f1lag and returns the value that had been
stored in f1ag. Following the Peril-L convention, f1ag is underlined in the code above to indicate that
it is a global variable.

To show that this code guarantees mutual exclusion, let
nerit = |{i | PC; € {3,4}}]
Now show that Iy is an invariant of the program where:
In = (flag= (ncrit =1)) A (nerit < 1)

Finally, write a short explanation of why Iy implies that at most one thread is in its critical section at any
given time.

(b) Test-and-Set with MESI (10 points)
Figure [I] shows the MESI protocol from the October 4 lecture. Show that this protocol is insufficient for
implementing the tas instruction. In particular, consider two threads that try to perform a test-and-set at
the same time. Assume that thread O performs the first read. Show that there are no states that their caches
can be in after this read that guarantees that thread 0 performs its write before thread 1 performs its read.
(c) Extending MESI (10 points)
Now, add a fifth state to the MESI protocol that we will label T in diagrams in honour of the test-and-
set instruction. We will add a new operation called “read-with-intent-to-write” that is used for the read
operation of a test-and set, and brings the cache into the T state. Draw the state-diagram for the five-state
protocol that supports test-and-set. Your diagram should have states M, E, S, I, and T. Show the transitions
for local-read, local write, remote-read, remote-write, local-read-with-intent-to-write, remote-read-with-
intent-to-write, and e. To make the transition labels legible, you may use the following abbreviations:

Ir: read by the local processor

Iw: write by the local processor

IX: read-with-intent-to-write by the local processor

rr: read by another (i.e. remote) processor

rw: write by another (i.e. remote) processor

rx: read-with-intent-to-write by another (i.e. remote) processor
€: Spontanous transition (always allowed)

