
CpSc 418 Homework 4 Due: Nov. 30, 2012, 11:59pm

5% extra credit if solution submitted by 11:59pm on Nov. 27.

Please submit your solution using the handin program as:
cs418 hw4

Your submission should consist of the following files:

hw4.erl – Erlang source (ASCII text). All functions requested in this assignment must be exported by this module.

hw4.c – C source (ASCII text). All functions requested in this assignment must be exported by this module.

hw4.txt – plain, ASCII text, or hw4.pdf – PDF.

1. Reduce and Scan (75 points)
Implement each of the operations below using Erlang (with the wtreemodule) and MPI (using MPI Reduce,
MPI Scan, and MPI Op create).

(a) Find element. (25 points)
i. Draw a picture. (5 points)

Given an array, A, of N elements, and a special value, q, define

{first , last} = index (q, A)

Where first is the smallest integer, i ∈ 1, . . . , N such that Ai = q, and last is the largest integer in
i ∈ 1, . . . , N such that Ai = q. If no element of A is equal to q, then first is +∞, and last is −∞.
For example, if

A = [1, 2, 2, 4, 2, 6, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6]

and {first , last} = index (4, A), then first = 4 and then last = 14. Draw a diagram that shows how
this computation can be performed using a reduce operation with four processes where each process
initially holds four consecutive elements of A. You can draw your diagram neatly by hand, scan it,
and include it in hw4.pdf, or you can draw it using a drawing program of your choice, export it as a
PDF file, and include it in hw4.pdf.

ii. Erlang version: (10 points)
hw4:index(W, KeyA, Q) -> {First, Last}

• W is a worker pool.
• KeyA is the key for the source list.
• Q is value to search for in the list.

First and Last are set to the indices of the first and last occurrences of Q in the distributed list
associated with KeyA. If Q does not occur in this list, then the atom undefined is returned.

iii. MPI version: (10 points)
void first last(int *src, int count, int q, int *dst, int root, MPI comm comm)

• src is a pointer to an array of count elements.
• q is the special value to search for.
• dst is a pointer to an array of 2 elements.
• comm is an MPI communicator

dst[0] gets the index of the first occurence of q in src, and dst[1] gets the index of the last
occurence of q in src. If q does not occur in src, both dst[0] and dst[1] are set to −1.

1

(b) Rolling average. (25 points)
i. Draw a picture. (5 points)

Given an array, A, of N elements, the M-element rolling average of A is the array B where

Bk =
1

M

k∑
i=max(1,k−(M−1))

Ai

For example, if
A = [1, 4, 9, 16, 25, 36, 49, 64],

and B is the 3-element rolling average of A, then

B = [1/3, 5/3, 14/3, 29/3, 50/3, 77/3, 110/3, 149/3].

Draw a diagram that shows how this computation can be performed using a scan operation with four
processes where each process initially holds two consecutive elements of A, and each process will
hold two elements of B at the end of the reduce. You can draw your diagram neatly by hand, scan it,
and include it in hw4.pdf, or you can draw it using a drawing program of your choice, export it as a
PDF file, and include it in hw4.pdf.

ii. Erlang version: (10 points)
hw4:rolling average(W, KeyA, KeyB, M)

• W is a worker pool.
• KeyA is the key for the source list.
• KeyB is the key for the result list.
• M a positive integer.

Compute the M-element rolling average of the distributed list associated with KeyA and store it as a
distributed list associated with KeyB.

iii. MPI version: (10 points)
void rolling average(double *src, double *dst, int count, int m, MPI comm comm)

• src is a pointer to an array of count elements.
• dst is a pointer to an array of count elements.
• m is a positive integer.
• comm is an MPI communicator.

Compute the m-element rolling average of the elements of src and store the result in dst.

(c) Credit Card balance (25 points) Consider a credit-card account that is opened on day 0 with a balance of
$0.00. Let T be a list of transactions, where each transaction is a tuple (d, v); d is an integer, the date on
which the transaction took place; and v is the amount of the transaction. If v is positive, it is a purchase,
which increases the balance owed on the account. If v is negative, it is a payment, which decreases the
balance owed. For any positive integer, n, we compute the balance on day n in two steps:

balance(0) = 0

balance(n) = (1 + r) ∗ balance(n− 1) +
∑

(n,a)∈T

a, the “true” balance

acctbal(n) = round(balance(d), 0.01), rounded to the nearest penny

where r is the daily interest rate, and round(x, p) rounds x to the nearest multiple of p. Note that this
credit card pays interest if you’ve got a negative balance – don’t expect this for a reall credit card.

2

As an example, let

T = [(1, 17.42), (2, 5.00), (3,−20.00), (4, 1.00), (4, 12.34), (6,−20.00), (7, 10.00), (10, 9.99)]

and r = 0.02 (a usurious rate, even for a credit card!). Letting B be the true balance following each
transaction, and A be the account balance. We get:

B = [17.42, 22.7684, 3.223768, 4.28824336, 16.62824336, −2.69997561, 7.24602488, 17.67953957]
A = [17.42, 22.77, 3.22, 4.29, 16.63, −2.70, 7.25, 17.68]

i. Draw a picture. (5 points)
Draw a diagram that shows how the computation of the account balance after each transaction can be
performed using a scan operation with four processes where each process initially holds two consecu-
tive elements of T , and each process will hold two elements of B at the end of the scan. You can draw
your diagram neatly by hand, scan it, and include it in hw4.pdf, or you can draw it using a drawing
program of your choice, export it as a PDF file, and include it in hw4.pdf.

ii. Erlang version: (10 points)
hw4:balance(W, KeyT, KeyB, Rate)

• W is a worker pool.
• KeyT is the key for the distributed list of transactions. This list is sorted in ascending order of

transaction date, and that each transaction is of the form {Date, Amount}.
• KeyB is the key for the result list.
• Rate is the daily interest rate (i.e. r in the problem statement).

Compute the after transaction balances for the transactions stored as the distributed list associated
with KeyT and store the resulta as a distributed list associated with KeyB. Of course, you can use
erlang’s floating-point arithmetic and will get a bit of floating-point round-off when computing the
“true” balance.

iii. MPI version: (10 points)
void balance(struct Transaction *tr, double *dst, int count, int m, MPI comm

comm)

• tr is a pointer to an array of count transactions where
struct Transaction {

int date;
double amount;

}
• dst is a pointer to an array of count elements.
• comm is an MPI communicator

Compute after-transaction balances for the transactions stored as src and store the result in dst. Of
course, you can use double-precision arithmetic for your calculations and incur a bit of round-off error
when computing the “true” balance.

2. Test-and-set (30 points)
In class and on homework 3, we considered mutual exclusion algorithms for which the only atomic (i.e. indivis-
ible) operations were memory reads and memory writes. Modern machines provide other instructions, where a
simple one is tas (“test-and-set”). In particular,

tas $Rdst, $Rptr

reads the memory location at the address given by register $Rptr, stores the value read in register $Rdst, and
sets the content of the memory location to 1.

3

local write*

E

I

S

M

ε

remote write* ε,

lo
cal w

rite*

re
m

o
te

 r
ea

d

local w
rite

remote re
ad

update m
emory

remote write*

ε,

local re
ad

I
= shared
= invalid

S
E = exclusive

= modifiedM

write*
(to memory)

= write−through

write
(local−cache only)

= write−back

ε = "spontaneous"
transition

update memory
remote write*,

.

Figure 1: The MESI Cache-Coherence Protocol

(a) Using tas for mutual exclusion (10 points)
Show that the following code guarantees mutual exclusion for N threads indicated by their respective
program counters, PC0, . . . , PCN .

initially: flag = 0;
PCi=0: while(true) {
PCi=1: non-critical code
PCi=2: while(tas(&flag));
PCi=3: critical section
PCi=4: flag= false;
PCi=5: }

where tas(&flag) performs a test-and-set on address of flag and returns the value that had been
stored in flag. Following the Peril-L convention, flag is underlined in the code above to indicate that
it is a global variable.
To show that this code guarantees mutual exclusion, let

ncrit = |{i | PCi ∈ {3, 4}}|

Now show that IN is an invariant of the program where:

IN = (flag = (ncrit = 1)) ∧ (ncrit ≤ 1)

Finally, write a short explanation of why IN implies that at most one thread is in its critical section at any
given time.

(b) Test-and-Set with MESI (10 points)
Figure 1 shows the MESI protocol from the October 4 lecture. Show that this protocol is insufficient for
implementing the tas instruction. In particular, consider two threads that try to perform a test-and-set at
the same time. Assume that thread 0 performs the first read. Show that there are no states that their caches
can be in after this read that guarantees that thread 0 performs its write before thread 1 performs its read.

(c) Extending MESI (10 points)
Now, add a fifth state to the MESI protocol that we will label T in diagrams in honour of the test-and-
set instruction. We will add a new operation called “read-with-intent-to-write” that is used for the read
operation of a test-and set, and brings the cache into the T state. Draw the state-diagram for the five-state
protocol that supports test-and-set. Your diagram should have states M, E, S, I, and T. Show the transitions
for local-read, local write, remote-read, remote-write, local-read-with-intent-to-write, remote-read-with-
intent-to-write, and ε. To make the transition labels legible, you may use the following abbreviations:

4

lr: read by the local processor
lw: write by the local processor
lx: read-with-intent-to-write by the local processor
rr: read by another (i.e. remote) processor
rw: write by another (i.e. remote) processor
rx: read-with-intent-to-write by another (i.e. remote) processor
ε: Spontanous transition (always allowed)

5

