
CpSc 418 Homework 3 Due: Nov. 9, 2012, 11:59pm

5% extra credit for if solution submitted by 11:59pm on Nov. 5.

Please submit your solution using the handin program. Submit the program as
cs418 hw3

This requires you to have an account on the UBC Computer Science undergraduate machines. If you need an account,
go to: https://www.cs.ubc.ca/students/undergrad/services/account
to request one.
Your submission should consist of the following files:

hw3.erl – Erlang source (ASCII text). All functions requested in this assignment must be exported by this module.

hw3.txt – plain, ASCII text, or hw3.pdf – PDF.

The first file, hw3.erl, will be your solution to the programming part of the assignment, neatly commented.
The second file, hw3.txt or hw3.pdf, will be a plain text file of PDF file with your solution to the written part of
the assignment. Handwritten solutions may be scanned and included in the hw3.pdf file.

1. Mutual exclusion (15 points) Figure 1 shows Dekker’s mutual exclusion algorithm as presented in the October
4 lecture. A programmer decided to “simplify” the algorithm by changing the while-loop at line 3 to an if-
statement – see figure 2. Here’s their reasoning:

Now, consider the while-loop at lines 3–9. If the loop-body (lines 4–8) is executed by thread 0,
then turn must be set to 0 when the while-loop at line 6 exits and execution proceeds to line 7. This
means that thread 1 set turn to 0 at line 11 and will then set flag[1] to false at line 12 without
entering its critical section. Nothing in lines 7–9 changes the value of flag[1]. This means that,
flag[1] will be false (or about to be set to false) when thread 0 completes executing lines 7–9,
and thread 0 will exit the while loop. Therefore, the loop body is executed at most once, and the
while-loop can be replace by an if-statement.

(a) Counter-example trace (10 points) Show that the modified version of the algorithm as shown in figure 2
does not guarantee mutual exclusion. In particular, show a counter-example trace like that on slide 31 of
the October 4 slides (web only). Your trace should start with:

PC0 = PC1 = 0;
flag[0] = flag[1] = false;
turn = 0;

and end in a state with

PC0 = PC1 = 10;

(b) Short explanation (5 points) Write a short explanation (less than 50 words) of why the modified version
doesn’t work.

2. Peterson’s Algorithm (15 points) Figure 3 shows Peterson’s mutual exclusion algorithm. Peterson’s insight is
that when a thread tries to enter its critical section, it first sets turn to give the other thread priority. If both
threads try to enter at roughly the same time, the last thread to try will set turn to give priority to the earlier
thread.

(a) An Invariant (10 points) Let

I = ∀k ∈ {0, 1}. flag[k] = (3 ≤ PCk ≤ 9)

∧ ((6 ≤ PCk ≤ 8) ∧ ¬tmpk) ⇒ (¬flag[k] ∨ (turn = k) ∨ (PCk = 3))
∧ (PCk = 8) ⇒ ¬tmpk
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thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: while(flag[1]) {
PC0= 4: if(turn != 0) {
PC0= 5: flag[0] = false;
PC0= 6: while(turn != 0);
PC0= 7: flag[0] = true;
PC0= 8: }
PC0= 9: }
PC0=10: critical section
PC0=11: turn = 1;
PC0=12: flag[0] = false;
PC0=13: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: while(flag[0]) {
PC1= 4: if(turn != 1) {
PC1= 5: flag[1] = false;
PC1= 6: while(turn != 1);
PC1= 7: flag[1] = true;
PC1= 8: }
PC1= 9: }
PC1=10: critical section
PC1=11: turn = 0;
PC1=12: flag[1] = false;
PC1=13: }

Figure 1: Dekker’s Algorithm

thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: if(flag[1]) { //while changed to if
PC0= 4: if(turn != 0) {
PC0= 5: flag[0] = false;
PC0= 6: while(turn != 0);
PC0= 7: flag[0] = true;
PC0= 8: }
PC0= 9: }
PC0=10: critical section
PC0=11: turn = 1;
PC0=12: flag[0] = false;
PC0=13: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: if(flag[0]) { //while changed to if
PC1= 4: if(turn != 1) {
PC1= 5: flag[1] = false;
PC1= 6: while(turn != 1);
PC1= 7: flag[1] = true;
PC1= 8: }
PC1= 9: }
PC1=10: critical section
PC1=11: turn = 0;
PC1=12: flag[1] = false;
PC1=13: }

Warning: this code does not guarantee mutual exclusion!

Figure 2: Modified Dekker’s Algorithm
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Initially: PC0 = PC1 = 0; flag[0] = flag[1] = false; turn = 0.
thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: turn = 1;
PC0= 4: do {
PC0= 5: tmp0 = flag[1];
PC0= 6: tmp0 = tmp0 && (turn == 1);
PC0= 7: } while(tmp0);
PC0= 8: critical section
PC0= 9: flag[0] = false;
PC0=10: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: turn = 0;
PC1= 4: do {
PC1= 5: tmp1 = flag[0];
PC1= 6: tmp1 = tmp1 && (turn == 0);
PC1= 7: } while(tmp1);
PC1= 8: critical section
PC1= 9: flag[1] = false;
PC1=10: }

Figure 3: Peterson’s Mutual Exclusion Algorithm

where k = 1− k (i.e. it is the index of the “other” thread).
Prove that I is an invariant of the program from figure 3.
Note: my version of Peterson’s algorithm is a bit more pedantic than, for example, the version on wikipedia.
They replace my loop at lines 4. . . 7 with

while(flag[k] && (turn == k));
I introduced the local variables tmp0 and tmp1 to show that the algorithm works even if flag[k] or turn
is modified by the other thread while computing the condition for continuing the loop.

(b) Mutual Exclusion (5 points) Prove that the invariant, I , from part (a) ensures mutual exclusion. In other
words, show

I ⇒ ¬((PC0 == 8) ∧ (PC1 == 8))

3. Mesh Networks (25 points)

(a) 2-dimensional meshes (5 points) Let m > 0 be an integer, and consider a 2D mesh network consisting of
N = m2 processors. For simplicity, assume that m is even. Each processor can be identified with a tuple,
(i, j), where 0 ≤ i, j < m, and processor (i, j) has links to

processor (i+ 1, j), if i < m− 1;
processor (i− 1, j), if i > 0;
processor (i, j + 1), if j < m− 1;
processor (i, j − 1), if j > 0.

Assume that each link can receive one message on each incoming link and send one message on each
outgoing link using one unit of time.
Show that if each processor with i < m/2 sends distinct messages to each processor with i ≥ m/2, then
the time to convey these messages to their destinations is O(N3/2).

(b) d-dimensional meshes (5 points) Let m > 0 and d > 0 be integers, and consider a d-dimensional mesh
network consisting of N = md processors. For simplicity, assume that m is even. Each processor can
be identified with a tuple, (i0, i1, . . . , id−1), where 0 ≤ ik < m, and there is a link between a pair of
processors iff all but one of their indices are identical, and they differ by ±1 in the index for which they
are different. Assume that each link can receive one message on each incoming link and send one message
on each outgoing link using one unit of time.
Show that if each processor with i0 < m/2 sends distinct messages to each processor with i0 ≥ m/2, then
the time to convey these messages to their destinations is O(N1+ 1

d ).
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(c) d-dimensional messages (cont.) (5 points) Now consider a d-dimensional mesh, and let A and B be
any partitioning of the processors into to sets of size N/2. Show that if each processor in A sends distinct
messages to each processor in B, then the time to convey these messages to their destinations is O(N1+ 1

d ).

(d) How big is a d-dimensional mesh? (10 points) Use the result from part (c) to show that if a d-dimensional
mesh of N = md processors is implemented in our 3-dimensional universe, then the volume of the mesh
of processors is O(N

3
2 (1−

1
d )). Compare this with the result for a hypercube from the October 9 lecture.

4. Reduce (38 points) Given any solution (yours, the solution set, a friend’s, etc. – but give proper attribution if
it’s not yours) for finding all prime numbers that are less than or equal to N ,

(a) (10 points) Write code to compute the sum of all primes that are less than or equal to N . You should
measure the time that it takes to compute the sum given that the distributed list of primes has already been
computed. Use the wtree module from the CpSc 418 erlang library. You should to use wtree:create
to create a worker pool where the workers are organized as a binary tree, and wtree:reduce for the
reduce operation to compute the sum. Note that the worker-pool returned by wtree:create can be
used by any of the functions from module workers as well as those from wtree.
In a bit more detail, you should write a module called hw3 that exports the function sum/2 where

sum(W, Key) -> Total

W is a worker pool, Key is the name for the distributed list of primes, and Total is the sum of the primes
in that distributed list.
For example, then the primes that are less than or equal to 100 are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31
37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79
83, 89, 97

Assume that the primes that are less than or equal to 100 are stored in a distributed list that’s associated
with the atom p100 for worker pool W, and that p90 is a distributed list for the primes that are less than
or equal to 90.

hw3:sum(W, p100).

should print

1060

Likewise,

hw3:sum(W, p90).

should print

963

(b) (5 points) Measure the speed-up of your implementation of sum compared with lists:sum (assuming
that you have already retrieved all of the primes into a single list) when running on gambier.ugrad.cs.ubc.ca
with 64 worker processes.

• What is the speed-up for the value of N for which the sequential version takes 1 second?
• What is the smallest value of N for which the parallel version achieves 80% of the speed up that you

reported above?

(c) (15 points) Write code to find the pair of consecutive primes with the largest gap, for the primes that are
less than or equal to N . If there is more than one such pair, return the first such pair.
In a bit more detail, module hw3 should export largest gap/2 where

largest gap(W, Key) -> {P1, P2}
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W is a worker pool, Key is the name for the distributed list of primes, and {P1, P2} is the pair of primes
in that distributed list with the largest gap.
Continuing the example from part (a),

hw3:largest gap(W, p100).

should print

{89,97}

If the primes that are less than or equal to 90 are stored in a distributed list that’s associated with the atom
p90, then

hw3:largest gap(W, p90).

should print

{23,29}

There are seven pairs of consecutive primes less than 90 with a gap of 6, but {23,29} is the first (i.e.
smallest) such pair.

(d) (8 points) Write a sequential version of largest gap. Measure the speed-up of your implementation
of largest gap compared with your sequential version (assuming that you have already retrieved all of
the primes into a single list) when running on gambier.ugrad.cs.ubc.ca with 64 worker processes.

• What is the speed-up for the value of N for which the sequential version takes 1 second?
• What is the smallest value of N for which the parallel version achieves 80% of the speed up that you

reported above?

5


