
CpSc 418 Homework 2
Revised September 20, 2012

Due: Oct. 9, 2012, 11:59pm

65 points.
5% extra credit for problems 1–3 if solution submitted by 11:59pm on Oct. 4.

Please submit your solution using the handin program. Submit the program as
cs418 hw2

This requires you to have an account on the UBC Computer Science undergraduate machines. If you need an account,
go to: https://www.cs.ubc.ca/students/undergrad/services/account
to request one.
Your submission should consist of the following files:

hw2.erl – Erlang source (ASCII text). All functions requested in this assignment must be exported by this module.

hw2.txt – plain, ASCII text.

hw2 data.txt – plain, ASCII text.

hw2 plotN.[jpg|gif|pdf|svg] – image files of plots, where hw2 plotN is replaced with hw2 plot1,
hw2 plot2, etc.

The first file, hw2.erl, will be your solution to the programming part of the assignment, neatly commented.
The second file, hw2.txt, will be a plain text file with your solution to the written part of the assignment.
The third file, hw2 data.txt, will be a plain text file with your raw data for the written questions, clearly numbered
by question.
The fourth-N th files, hw2 plotN.[jpg|gif|svg], will be image files in jpg, gif, or svg format of any plots used
in arriving at the solution. Note that it is acceptable for your submission not to include these files.

Note that no other file formats will be accepted. Your answers to the written questions must be short and concise,
but complete. Overly long and wordy answers may be docked points. When presenting answers to written questions,
put the numerical answers each on a line, followed by a blank line, followed by any explanations, discussions, and
justifications.

1. Head vs. Tail Recursion (20 points)
This problem is an introduction to measuring execution time using the time it module. It also provides a
comparison of a head-recursive and tail recursive implementations of a function.

(a) Head-recursive implemenation of max (5 points)
Write a head-recursive function

max hr(List) -> Number

that takes as an argument a list of numbers (i.e. integers or floats) and returns the largest element of the
list.

(b) Tail-recursive implemenation of max (5 points)
Write a tail-recursive function

max tr(List) -> Number

that takes as an argument a list of numbers (i.e. integers or floats) and returns the largest element of the
list.

(c) Performance comparsison (10 points)

t(Fun) -> [mean,Mean,std,Std]

1

https://www.cs.ubc.ca/students/undergrad/services/account

in the time itmodule is a function that computes the mean and standard deviation of the time spent when
evaluating function Fun. It calls Fun until a total execution time of 1 second is reached or exceeded. Use
the time it:t function to compare the time for evaluating max hr and max tr on lists of length 10,
100, 1,000, 10,000, 100,000, 1,000,000, and 10,000,000. Include the raw data in hw2 data.txt. In
hw2.txt, answer the following questions:

i. Which is faster, max hr or max tr?
ii. When is the difference the most significant?

iii. Why does the relative difference depend on the length of the list?

2. Message Performance (30 points)
How fast can Erlang send messages between two processes?

In this problem, we consider a linear model of the time it takes two processes to do a variable amount of work,
and send a small, fixed, constant-size message to each other. A simple model for such an interaction could be:

T (n) = t0 + t1 ∗W (n)

where T (n) is the total time taken, t0 is the time it takes to pass a small, fixed message without either process
doing any work, W (n) is a work function that varies the amount of work it does according to the (positive) in-
teger variable n, which specifies the number of computations W (n) will do, and t1 is the slope of this function
(that is, the change in elapsed time that it takes to perform work and message passing as n increases).

However, this model is flawed when Erlang runs locally and computation W (n). When W (n) is large enough,
Erlang will create a separate thread for each process, but when W (n) is small, Erlang will not run separate
threads, instead treating the two processes as coroutines. Instead, the model will be piecewise linear with two
pieces:

T (n) =

{
t0 + t1W (n), if n ≤ n0

u0 + u1W (n), otherwise

In this problem, you will write a program and take measurements to determine some model parameters.

(a) Multithreading (10 points). Find and report the amount of work at which Erlang begins to run two threads
(i.e. find n0)

(b) Message Overhead (10 points). Find and report the amount of time needed for Erlang to send a message
without doing any work (i.e. find t0)

(c) Message Overhead (10 points). Find and report the change in running time as n scales up for the multiple-
threads case, and for the coroutine case (i.e. find t1 and u1)

For the above problems, include a presentation of your raw data and any plots used to determine the values.

2

3. Parallelism Primes (35 points).

(a) Parallel Primes (20 points). Here’s a sequential implementation of the sieve of Eratosthenes:

% primes(A, N) -> the listof all primes P with A ≤ P ≤ N.
% The list is in ascending order.
primes(Lo, Hi) when is integer(Lo) and is integer(Hi) and (Lo > Hi) -> [];
primes(Lo, Hi) when is integer(Lo) and is integer(Hi) and (Hi < 5) ->

lists:filter(fun(E) -> (Lo =< E) and (E =< Hi) end, [2,3]);
primes(Lo, Hi) when is integer(Lo) and is integer(Hi) and (Lo =< Hi) ->

M = trunc(math:sqrt(Hi)),
SmallPrimes = primes(2, M),
BigPrimes = do primes(SmallPrimes, max(Lo, M+1), Hi),
if

(Lo =< 2) -> SmallPrimes ++ BigPrimes;
(Lo =< M) -> lists:filter(fun(E) -> E >= Lo end, SmallPrimes)

++ BigPrimes;
true -> BigPrimes

end.
primes(N) -> primes(1,N). % a simple default

% do primes(SmallPrimes, Lo, Hi) the elements of [Lo, ..., Hi] that are not divisible
% by any element of SmallPrimes.
do primes(SmallPrimes, Lo, Hi) ->

lists:foldl(fun(P, L) -> lists:filter(fun(E) -> (E rem P) /= 0 end, L) end,
lists:seq(Lo, Hi),
SmallPrimes).

where L is a list of all primes between the parameters A and N, that is all primes p such that A ≤ p ≤ N .
Implement a function par primes(A, N, Nproc) -> L
that use Nproc processes to find the primes from A to N. Use worker pools as provided in the workers
module – see http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/src/erl/source.html In
hw2.txt give a brief explanation of how you exploited parallelism for this problem including the reasons
behind your most important design choices.

(b) Speedup (5 points). Using the functions in the time it module available on the course page – see
http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/src/erl/source.html, measure the speedup
that results in evaluating par primes(1000, 500000, 64) function from part 3a over the sequen-
tial primes(1000, 500000) given when running the two functions on gambier. Report this number
to the nearest integer (or the nearest 0.5 if your speedup factor is below 5), and also include your raw data
(the two numbers used to calculate your speedup). Is this the speedup you would expect? Why is this (or
is not) the case?

(c) How Parallel? (10 points). Using the time it module, measure the running time of your par primes
function (when running on gambier) for different numbers of Erlang processes used in the worker pool.
Specifically, measure how long it takes par primes(1000,100000,Nproc) to run when Nproc =
1, 2, 3, 4, . . . , 256. You don’t need to run it for all 256 values of Nproc, but you should try every value of
Nproc from 1 to 16, and enough from 16 to 256 to show a clear pattern. You should show that run-time
initially decreases with increasing Nproc and then reaches a minimum. After that, using any more Erlang
processes will actually slow the problem down (think about why this is the case). If you look at the data
carefully, you’ll probably observe some zig-zagging of the plots. Getting a reasonable approximation of
the minimum is good enough for this problem.
Your task will be to report for which value of Nproc the running time is minimized. Is this value of
Nproc what you expected? If not, what is the value that you expected, and is the actual value you
observed reasonable? Why might there be discrepancies between the expected and observed values? Also
include your raw data and a plot.

3

http://www.ugrad.cs.ubc.ca/~cs418/2012-1/src/erl/source.html
http://www.ugrad.cs.ubc.ca/~cs418/2012-1/src/erl/source.html

