
CpSc 418 Homework 4 Solution Set

1. Reduce and Scan (75 points)
Implement each of the operations below using Erlang (with the wtreemodule) and MPI (using MPI Reduce,
MPI Scan, and MPI Op create).

(a) Find element. (25 points)
i. Draw a picture. (5 points)

Given an array, A, of N elements, and a special value, q, define

{first , last} = index (q, A)

Where first is the smallest integer, i ∈ 1, . . . , N such that Ai = q, and last is the largest integer in
i ∈ 1, . . . , N such that Ai = q. If no element of A is equal to q, then first is +∞, and last is −∞.
Draw a diagram that shows how this computation can be performed using a reduce operation with
four processes where each process initially holds four consecutive elements of A.
Solution:

Final result: {2, 10}

4 6 66 2 6 42 6 2 4

local
computation

{2, 4, 3}

by process 0

local
computation

{1, 4, 3}

by process 1

local
computation

{2, 4, 2}

by process 2

local
computation

{−1, 4, −1}

by process 3

by process 0
combine

by process 0
combine

by process 0
extract fields of interest

1 2 42

{2, 4+4, 3+4} = {2, 8, 7} {2, 4+4, 2} = {2, 8, 2}

P0 ! {2,8,2}

P0 ! {1,4,3}

by process 2
combine

P2 ! {−1,4,−1}

{2,16,10}

3

Note: My solution is based on the example from the problem statement with q = 2. I assumed four
processes, where each process initially holds four elements of the array,A. I changed the value ofA13

from 2 to 3 to get my example to illustrate what happens if a process has no array elements that match
the key. The value passed up the tree is a tuple of the form {First, Length, Last}, where
First is the index of the first occurrence of q in the subtree (or −1 if q does not occur in the

subtree);
Last is the index of the last occurrence of q in the subtree (or−1 if q does not occur in the subtree);
Length is the total number of elements in the subtree.

ii. Erlang version: (10 points)
Solution: see http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/hw/hw4.erl.

iii. MPI version: (10 points)
Solution: see http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/hw/hw4.c.

1

http://www.ugrad.cs.ubc.ca/~cs418/2012-1/hw/hw4.erl
http://www.ugrad.cs.ubc.ca/~cs418/2012-1/hw/hw4.c

(b) Rolling average. (25 points)
i. Draw a picture. (5 points)

Given an array, A, of N elements, the M-element rolling average of A is the array B where

Bk =
1

M

k∑
i=max(1,k−(M−1))

Ai

Draw a diagram that shows how this computation can be performed using a scan operation with four
processes where each process initially holds two consecutive elements of A, and each process will
hold two elements of B at the end of the reduce. You can draw your diagram neatly by hand, scan it,
and include it in hw4.pdf, or you can draw it using a drawing program of your choice, export it as a
PDF file, and include it in hw4.pdf.
Solution:

P2 ! [4, 9, 16]

Acc0 = [0,0,0]

(discarded)

Process 0 Process 1 Process 2 Process 3

P1 ! [0, 1, 4] P3 ! [16, 25, 36]

Leaf1 Leaf2 Leaf1 Leaf2Leaf1 Leaf2

combine combinecombine combine

combine combine

P0 ! [9,16] P2 ! [49,64]

P0 ! [36,49,64]

[9,16]

[9,16]

[1,4]

[1,4] [0,0,0]

[0.25, 1.25]

[0,1,4]

[3.5, 7.5] [49,64]

[49,64]

[25,36]

[4,9,16]

[13.5, 21.5]

[16,25,36]

[31.5, 43.5]

[36,49,64][4,9,16]

[4,9,16]

[4,9,16][0,0,0]

[25,36]

Leaf1 Leaf2

Notes: To compute a m-way rolling average, each subtree sends its m last values to its parent node.
If the subtree has fewer than m values, then it sends all of its values. In the downward phases, each
parent node sends to each of its children the m values that are to the right of that child.
• The original data is shown in blue.
• The propagation of values up the tree is shown in red.
• The propagation of values down the tree is shown in black. The value “reused” in the up and

down computations is indicated with a cyan arrow.
• The final result is shown in green.
• The Leaf1 function produces the m last elements of the node, or all of the elements if there are

fewer than m.
• The Combine function produces the lastm last elements of the concatenation of its left and right

operands. If the total number of elements of hte operands is less thanm, then Combine produces
the concatenaton of the its two operands. For the “downward” computation, the operand from the
parent is the “left” operand.

• The Leaf2 function computes the rolling average given the values from the left of the node and
its own values.

ii. Erlang version: (10 points)
Solution: see http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/hw/hw4.erl.

iii. MPI version: (10 points, Extra Credit)
Solution: see http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/hw/hw4.c.

2

http://www.ugrad.cs.ubc.ca/~cs418/2012-1/hw/hw4.erl
http://www.ugrad.cs.ubc.ca/~cs418/2012-1/hw/hw4.c

(c) Credit Card balance (25 points) Consider a credit-card account that is opened on day 0 with a balance of
$0.00. Let T be a list of transactions, where each transaction is a tuple (d, v); d is an integer, the date on
which the transaction took place; and v is the amount of the transaction. If v is positive, it is a purchase,
which increases the balance owed on the account. If v is negative, it is a payment, which decreases the
balance owed. For any positive integer, n, we compute the balance on day n in two steps:

balance(0) = 0

balance(n) = (1 + r) ∗ balance(n− 1) +
∑

(n,a)∈T

a, the “true” balance

acctbal(n) = round(balance(d), 0.01), rounded to the nearest penny

where r is the daily interest rate, and round(x, p) rounds x to the nearest multiple of p.

i. Draw a picture. (5 points)
Draw a diagram that shows how the computation of the account balance after each transaction can be
performed using a scan operation with four processes where each process initially holds two consec-
utive elements of T , and each process will hold two elements of B at the end of the scan.
Solution:

P2 ! [4, 9, 16]

Acc0 = [0,0,0]

(discarded)

Process 0 Process 1 Process 2 Process 3

P1 ! [0, 1, 4] P3 ! [16, 25, 36]

Leaf1 Leaf2 Leaf1 Leaf2Leaf1 Leaf2

combine combinecombine combine

combine combine

P0 ! [9,16] P2 ! [49,64]

P0 ! [36,49,64]

[9,16]

[9,16]

[1,4]

[1,4] [0,0,0]

[0.25, 1.25]

[0,1,4]

[3.5, 7.5] [49,64]

[49,64]

[25,36]

[4,9,16]

[13.5, 21.5]

[16,25,36]

[31.5, 43.5]

[36,49,64][4,9,16]

[4,9,16]

[4,9,16][0,0,0]

[25,36]

Leaf1 Leaf2

Notes: note that the figure is the same as for Q1.b, I just had to change the values being passed
between the processes. On the upward pass, each leaf computes its final balance assuming that the
starting balance is 0. It sends a tuple {FinalDate, FinalBalance} to its parent. The combine
operation applies the interest to the left balance according to the difference between the right final
date and the left final date:

CombinedBalance = LeftBalance ∗ (1 + Rate)RightDate−LeftDate + RightBalance

The downward computation uses the same Combine function (or course) to determine the account
balance and date to the left of each leaf, and from this, each leaf computes the balance following each
transaction.

ii. Erlang version: (10 points)
Solution: see http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/hw/hw4.erl.

iii. MPI version: (10 points)
Solution: see http://www.ugrad.cs.ubc.ca/˜cs418/2012-1/hw/hw4.c.

3

http://www.ugrad.cs.ubc.ca/~cs418/2012-1/hw/hw4.erl
http://www.ugrad.cs.ubc.ca/~cs418/2012-1/hw/hw4.c

2. Test-and-set (30 points)
In class and on homework 3, we considered mutual exclusion algorithms for which the only atomic (i.e. indivis-
ible) operations were memory reads and memory writes. Modern machines provide other instructions, where a
simple one is tas (“test-and-set”). In particular,

tas $Rdst, $Rptr

reads the memory location at the address given by register $Rptr, stores the value read in register $Rdst, and
sets the content of the memory location to 1.

(a) Using tas for mutual exclusion (10 points)
Show that the following code guarantees mutual exclusion for N threads indicated by their respective
program counters, PC0, . . . , PCN .

initially: flag = false;
PCi=0: while(true) {
PCi=1: non-critical code
PCi=2: while(tas(&flag));
PCi=3: critical section
PCi=4: flag= false;
PCi=5: }

where tas(&flag) performs a test-and-set on address of flag and returns the value that had been
stored in flag. Following the Peril-L convention, flag is underlined in the code above to indicate that
it is a global variable.
To show that this code guarantees mutual exclusion, let

ncrit = |{i | PCi ∈ {3, 4}}|

Now show that IN is an invariant of the program where:

IN = (flag = (ncrit = 1)) ∧ (ncrit ≤ 1)

Finally, write a short explanation of why IN implies that at most one thread is in its critical section at any
given time.

Solution:

Initially: PCi = 0 for all i ∈ {0, . . . , N − 1}; thu ncrit = 0. Furthermore, flag = false.
Thus, the IN holds.

PCi ∈ {0, 1, 3, 5}: performing any of these actions leaves ncrit and flag unchanged. The
invariant is maintained.

(PCi = 2)∧¬flag: By the assumption that IN holds before performing this action, ncrit 6= 1
before performing the action. Thus ncrit = 0 before performing the action. (I should have
added a clause to the invariant that ncrit is non-negative.) The TAS instruction sets flag
to true and “returns” a value of false for the while-loop test. This means that after
performing this operation: PCi = 3 and flag = true and ncrit = 1. The invariant is
maintained.

(PCi = 2) ∧ flag: In this case, performing the action leaves PCi and flag unchanged. The
invariant is maintained.

(PCi = 4): By the assumption that IN holds before performing this action, ncrit = 1 and
flag = true both hold. Performing the action decrements ncrit and clears flag. The
invariant is maintained.

4

local write*

E

I

S

M

ε

remote write* ε,

lo
cal w

rite*

re
m

o
te

 r
ea

d

local w
rite

remote re
ad

update m
emory

remote write*

ε,

local re
ad

I
= shared
= invalid

S
E = exclusive

= modifiedM

write*
(to memory)

= write−through

write
(local−cache only)

= write−back

ε = "spontaneous"
transition

update memory
remote write*,

.

Figure 1: The MESI Cache-Coherence Protocol

This shows that IN is an invariant.
To see that IN guarantees mutual exclusion, I will show that if mutual exclusion is violated, then
IN does not hold. If mutual exclusion is violated, then two or more threads whose PC values are
4. This means that ncrit ≥ 2, and therefore that IN is false.

(b) Test-and-Set with MESI (10 points)
Figure 1 shows the MESI protocol from the October 4 lecture. Show that this protocol is insufficient for
implementing the tas instruction. In particular, consider two threads that try to perform a test-and-set at
the same time. Assume that thread 0 performs the first read. Show that there are no states that their caches
can be in after this read that guarantees that thread 0 performs its write before thread 1 performs its read.

Solution:
Simple answer: consider starting execution from a state where both threads have the line for
flag in their processor’s caches in the shared state, and that flag = false. If I assume that
the read and write of the TAS are treated as normal reads and writes, then we could have both
threads perform a read of flag and get false. Then both would attempt to write true to
flag. One thread (let’s say thread 0) would win the arbitration, move to the exclusive state and
update it’s cache entry and main memory. The cache for the other thread would invalidate its
block for flag. Now the other thread (let’s say thread 1) would perform its write. It would first
transition from invalid to exclusive by loading the cache line from memory, and then invalidate
the entries by performing a write-through to memory, and write the value true on top of the
true value that thread 0 already wrote. Because the write simply reloads the cache line and then
performs the write, nothing stops the thread 1 from seeing a successful TAS and continuing to its
critical region.
At this point, you might object:

Objection 1: shouldn’t the write fail if the cache is in the invalid state?
Objection 2: didn’t the problem state that a failure can occur no matter what state the thread 0’s

cache is in after it performs its read?
With respect to objection 1, we don’t want a write to fail if the cache line is invalid – otherwise
normal writes would fail when they incur a cache miss, and this would make programming very
painful. We could consider having the TAS fail if the cache line is invalid when the write is
performed. That seems to work.
With respect to objection 2: yes, the problem should handle the more general case. I gave a
simple answer first, and the simple version should get full credit. Now, consider what happens if
thread 0 can do it’s read and tell its cache to move to some other state (perhaps invalidating the
other cache lines at the same time). No matter what state the caches end up in, thread 1 can do

5

it’s read following the usual MESI protocol. Next, one of the threads does its write. This gets
us back to the original answer. If each thread requires the cache to be in the state that it left it in
after its read for the write to go through and TAS to succeed, then

(c) Extending MESI (10 points)
Now, add a fifth state to the MESI protocol that we will label T in diagrams in honour of the test-and-
set instruction. We will add a new operation called “read-with-intent-to-write” that is used for the read
operation of a test-and set, and brings the cache into the T state. Draw the state-diagram for the five-state
protocol that supports test-and-set. Your diagram should have states M, E, S, I, and T. Show the transitions
for local-read, local write, remote-read, remote-write, local-read-with-intent-to-write, remote-read-with-
intent-to-write, and ε. To make the transition labels legible, you may use the following abbreviations:

lr: read by the local processor
lw: write by the local processor
lx: read-with-intent-to-write by the local processor
rr: read by another (i.e. remote) processor
rw: write by another (i.e. remote) processor
rx: read-with-intent-to-write by another (i.e. remote) processor
ε: Spontanous transition (always allowed)

Solution:

local TAS−read

local TAS−read

local TAS−read

local TAS−read

DROP

local TAS−write

DROP lo
cal w

rite*

re
m

o
te

 r
ea

d

local w
rite

remote re
ad

update m
emory

local re
ad

local write*

DROP

ε

E

I

S

M

T

Note: Drop = remote write*, remote TAS−read, or

update memory

Observe that once a cache enters state T it stays there until a local TAS-write has been performed. In
particular, it won’t move to the other states while waiting for the TAS-write, and other caches will be
blocked from moves to S, E, or T while this cache is in state T.

6

