
CpSc 418 Homework 3 Due: Nov. 9, 2012, 11:59pm

5% extra credit for if solution submitted by 11:59pm on Nov. 5.

Please submit your solution using the handin program. Submit the program as
cs418 hw3

This requires you to have an account on the UBC Computer Science undergraduate machines. If you need an account,
go to: https://www.cs.ubc.ca/students/undergrad/services/account
to request one.
Your submission should consist of the following files:

hw3.erl – Erlang source (ASCII text). All functions requested in this assignment must be exported by this module.

hw3.txt – plain, ASCII text, or hw3.pdf – PDF.

The first file, hw3.erl, will be your solution to the programming part of the assignment, neatly commented.
The second file, hw3.txt or hw3.pdf, will be a plain text file of PDF file with your solution to the written part of
the assignment. Handwritten solutions may be scanned and included in the hw3.pdf file.

1. Mutual exclusion (15 points) Figure 1 shows Dekker’s mutual exclusion algorithm as presented in the October
4 lecture. A programmer decided to “simplify” the algorithm by changing the while-loop at line 3 to an if-
statement – see figure 2. Here’s their reasoning:

Now, consider the while-loop at lines 3–9. If the loop-body (lines 4–8) is executed by thread 0,
then turn must be set to 0 when the while-loop at line 6 exits and execution proceeds to line 7. This
means that thread 1 set turn to 0 at line 11 and will then set flag[1] to false at line 12 without
entering its Nothing in lines 7–9 changes the value of flag[1]. This means that, flag[1] will be
false (or about to be set to false) when thread 0 completes executing lines 7–9, and thread 0 will
exit the while loop. Therefore, the loop body is executed at most once, and the while-loop can be
replace by an if-statement.

(a) Counter-example trace (10 points) Show that the modified version of the algorithm as shown in figure 2
does not guarantee mutual exclusion. In particular, show a counter-example trace like that on slide 31 of
the October 4 slides (web only). Your trace should start with:

PC0 = PC1 = 0;
flag[0] = flag[1] = false;
turn = 0;

and end in a state with

PC0 = PC1 = 8;

See Figure 2A.

(b) Short explanation (5 points) Write a short explanation (less than 50 words) of why the modified version
doesn’t work.

The problem is that one thread can leave its critical section, set turn, and re-enter its critical section
while the other thread is (suspended) at line 6. When the other thread resumes execution, it sees that turn has changed
and enters its critical section without checking flag.

2. Peterson’s Algorithm (15 points) Figure 3 shows Peterson’s mutual exclusion algorithm. Peterson’s insight is
that when a thread tries to enter its critical section, it first sets turn to give the other thread priority. If both
threads try to enter at roughly the same time, the last thread to try will set turn to give priority to the earlier
thread.
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thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: while(flag[1]) {
PC0= 4: if(turn != 0) {
PC0= 5: flag[0] = false;
PC0= 6: while(turn != 0);
PC0= 7: flag[0] = true;
PC0= 8: }
PC0= 9: }
PC0=10: critical section
PC0=11: turn = 1;
PC0=12: flag[0] = false;
PC0=13: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: while(flag[0]) {
PC1= 4: if(turn != 1) {
PC1= 5: flag[1] = false;
PC1= 6: while(turn != 1);
PC1= 7: flag[1] = true;
PC1= 8: }
PC1= 9: }
PC1=10: critical section
PC1=11: turn = 0;
PC1=12: flag[1] = false;
PC1=13: }

Figure 1: Dekker’s Algorithm

(a) An Invariant (10 points) Let

I = ∀k ∈ {0, 1}. flag[k] = (3 ≤ PCk ≤ 9)

∧ ((6 ≤ PCk ≤ 8) ∧ ¬tmpk) ⇒ (¬flag[k] ∨ (turn = k) ∨ (PCk = 3))
∧ (PCk = 8) ⇒ ¬tmpk

where k = 1− k (i.e. it is the index of the “other” thread).
Prove that I is an invariant of th eprogram from figure 3.
Note: my version of Peterson’s algorithm is a bit more pedantic than, for example, the version on wikipedia.
They replace my loop at lines 4. . . 7 with

while(flag[k] && (turn == k));
I introduced the local variables tmp0 and tmp1 to show that the algorithm works even if flag[k] or turn
is modified by the other thread while computing the condition for continuing the loop.

The invariant holds initially because both flag variables are false, and both program counters are zero:

I = ∀k ∈ {0, 1}. flag[k] = (3 ≤ PCk ≤ 9)

∧ ((6 ≤ PCk ≤ 8) ∧ ¬tmpk) ⇒ (¬flag[k] ∨ (turn = k) ∨ (PCk = 3))
∧ (PCk = 8) ⇒ ¬tmpk

= ∀k ∈ {0, 1}. false = (3 ≤ 0 ≤ 9)
∧ ((6 ≤ 0 ≤ 8) ∧ ¬tmpk) ⇒ (¬false ∨ (turn = k) ∨ (0 = 3))
∧ (0 = 8) ⇒ ¬tmpk

= ∀k ∈ {0, 1}. false = false
∧ (false ∧ ¬tmpk) ⇒ (true ∨ (turn = k) ∨ (0 = 3))
∧ false ⇒ ¬tmpk

= ∀k ∈ {0, 1}.true ∧ true ∧ true
= true

Note: the one sentence explanation above is sufficient to get full credit. I showed the detailed derivation to help anyone
who finds it helpful.
Now, I’ll show that each clause of the invariant is preserved by each action of thread 0. The arguments for thread 1 are
equivalent.
flag[0] = (3 ≤ PC0 ≤ 9):
• If PC0 = 2, then performing this action sets flag[0] to true and PC0 to 3 which establishes the clause.
• If PC0 = 9, then performing this action sets flag[0] to false and PC0 to 10 which also establishes the

clause.
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thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: if(flag[1]) { //while changed to if
PC0= 4: if(turn != 0) {
PC0= 5: flag[0] = false;
PC0= 6: while(turn != 0);
PC0= 7: flag[0] = true;
PC0= 8: }
PC0= 9: }
PC0=10: critical section
PC0=11: turn = 1;
PC0=12: flag[0] = false;
PC0=13: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: if(flag[0]) { //while changed to if
PC1= 4: if(turn != 1) {
PC1= 5: flag[1] = false;
PC1= 6: while(turn != 1);
PC1= 7: flag[1] = true;
PC1= 8: }
PC1= 9: }
PC1=10: critical section
PC1=11: turn = 0;
PC1=12: flag[1] = false;
PC1=13: }

Warning: this code does not guarantee mutual exclusion!

Figure 2: Modified Dekker’s Algorithm

step from state perform
PC0 PC1 flag[0] flag[1] turn

0 0 0 false false 0 PC0 = 0: while(true) {
1 1 0 false false 0 PC0 = 1: non-critical code
2 2 0 false false 0 PC0 = 2: flag[0] = true;

3 3 0 true false 0 PC0 = 3: if(flag[1])
4 10 0 true false 0 PC1 = 0: while(true) {
5 10 1 true false 0 PC1 = 1: non-critical code
6 10 2 true false 0 PC1 = 2: flag[1] = true;

7 10 3 true true 0 PC1 = 3: if(flag[0]) {
8 10 4 true true 0 PC1 = 4: if(turn != 1) {
9 10 5 true true 0 PC1 = 5: flag[1] = false;

10 10 6 true false 0 PC0 =10: critical section
11 11 6 true false 0 PC0 =11: turn = 1;

12 12 6 true false 1 PC0 =12: flag[0] = false;

13 13 6 false false 1 PC0 =13: }
14 0 6 false false 1 PC0 = 0: while(true) {
15 1 6 false false 1 PC0 = 1: non-critical code
16 2 6 false false 1 PC0 = 2: flag[0] = true;

17 3 6 true false 1 PC0 = 3: if(flag[1])
18 10 6 true false 1 PC1 = 6: while(turn != 1);

19 10 7 true false 1 PC1 = 7: flag[1] = false;

20 10 8 true false 1 PC1 = 8: }
21 10 9 true false 1 PC1 = 9: }
22 10 10 true false 1 PC1 =10: critical section

Figure 2A: Counter-example trace for modified Dekker’s algorithm (question 1a).

3



Initially: PC0 = PC1 = 0; flag[0] = flag[1] = false; turn = 0.
thread 0: thread 1:
PC0= 0: while(true) {
PC0= 1: non-critical code
PC0= 2: flag[0] = true;
PC0= 3: turn = 1;
PC0= 4: do {
PC0= 5: tmp0 = flag[1];
PC0= 6: tmp0 = tmp0 && (turn == 1);
PC0= 7: } while(tmp0);
PC0= 8: critical section
PC0= 9: flag[0] = false;
PC0=10: }

PC1= 0: while(true) {
PC1= 1: non-critical code
PC1= 2: flag[1] = true;
PC1= 3: turn = 0;
PC1= 4: do {
PC1= 5: tmp1 = flag[0];
PC1= 6: tmp1 = tmp1 && (turn == 0);
PC1= 7: } while(tmp1);
PC1= 8: critical section
PC1= 9: flag[1] = false;
PC1=10: }

Figure 3: Peterson’s Mutual Exclusion Algorithm

• All other statements leave the value of flag[0] unchanged and don’t change the value of (3 ≤ PC0 ≤ 9).
Thus, these statements maintain the invariant.

((6 ≤ PC0 ≤ 8) ∧ ¬tmp0) ⇒ (¬flag[1] ∨ (turn = 0) ∨ (PC1 = 3)):
• If PC0 ≤ 4 or PC0 ≥ 8, then performing the action establishes (PC0 ≤ 5) ∨ (PC0 ≥ 9) which means that

(6 ≤ PC0 ≤ 8) and the clause is established.
• If PC0 = 5, then after executing the statement, PC0 = 6 and tmp0 = flag[1] which establishes the clause.
• If PC0 = 6, then I’ll consider two cases:

If, tmp0 holds before executing the statement,
then tmp0 = (turn = 1) after executing the statement. So, if ((6 ≤ PC0 ≤ 8) ∧ ¬tmp0) holds after
executing the statement, we can conclude turn 6= 1 after executing the statement.
Now (blush, blush), I see that I should have either included a clause (turn = 0) ∨ (turn = 1) in the
invariant or written the current clause as

((6 ≤ PC0 ≤ 8) ∧ ¬tmp0) ⇒ (¬flag[1] ∨ (turn 6= 1) ∨ (PC1 = 3))

I’ll claim that (turn = 0) ∨ (turn = 1) is “obvious,” and I’ll instruct Mike to give extra credit to anyone
who spots this technicality.
With this extra assumption, we now get that if ((6 ≤ PC0 ≤ 8)∧¬tmp0) holds after executing the statement,
so does turn 6= 1 and therefore turn = 0 which establishes the clause.
On the other hand if tmp0 holds after executing the statement, the implication is satisified because ((6 ≤
PC0 ≤ 8) ∧ ¬tmp0) is false.

If, tmp0 does not hold before executing the statement,
then the right side of the implication, ¬flag[1] ∨ (turn 6= 1) ∨ (PC1 = 3), must have held before exe-
cuting the statement. Because the statement doesn’t change any variables in the right side of the implication,
it continues to hold after the statement is executed.

• If PC0 = 7, then again there are two cases depending on tmp0.
If tmp0 holds before executing the statement, then PC0 = 4 after executing the statement, and the clause is

established.
If tmp0 does not hold before executing the statement, then PC0 = 8 after executing the statement, and no

other variables in the clause are changed. Thus, the clause continues to hold after executing the statement.
• I’ve covered all values for the PC0. This finishes the argument for this clause.

(PC0 = 8) ⇒ ¬tmp0:
• If PC0 6= 7 before executing a statement of thread 0, then PC0 6= 8 after executing the statement, and the clause

is established.
• If PC0 = 7 before executing a statement of thread 0, then there are two cases depending on the value of tmp0.

If tmp0 holds before executing the statement, then PC0 = 4 after executing the statement, and the clause is
established.

If tmp0 does not hold before executing the statement, then PC0 = 8 and tmp0 = false after executing the
statement which establishes the clasue.

Now, I’ll show that executing a statement of thread 0 doesn’t violate any of the clauses of I for the other thread.
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flag[1] = (3 ≤ PC1 ≤ 9): Actions of thread 0 don’t modify any variables appearing in this clause. Thus, the
clause is maintained.

((6 ≤ PC1 ≤ 8) ∧ ¬tmp1) ⇒ (¬flag[0] ∨ (turn = 1) ∨ (PC0 = 3))
We need to consider actions of thread 0 that can change flag[0] from false to true, change turn from 1
to anything else, change PC0 from 3 to anything else.
• Setting flag[0] = true: this is the statement at PC0 = 2. Performing the statement sets PC0 = 3 which

establishes this clause.
• Setting turn 6= 1: the only statement of thread 0 that modifies turn is the one at PC = 3 which sets turn to

1 and establishes this clause.
• Setting PC0 6= 3: The only statement that changes PC0 from 3 to anythinge else is the one at PC = 3 which

sets turn to 1 and establishes this clause.
(PC1 = 8) ⇒ ¬tmp1: Actions of thread 0 don’t modify any variables appearing in this clause. Thus, the clause is

maintained.

(b) Mutual Exclusion (5 points) Prove that the invariant, I , from part (a) ensures mutual exclusion. In other
words, show

I ⇒ ¬((PC0 = 8) ∧ (PC1 = 8))

Showing I ⇒ ¬((PC0 = 8)∧(PC1 = 8)) is equivalent to showing¬((PC0 = 8)∧(PC1 = 8)∧I).
In the derivation below, I just propagate the consequences of both program counters being 8
through the clauses of I to show ¬((PC0 = 8) ∧ (PC1 = 8) ∧ I). Expanding the definition of I
yields:

¬((PC0 = 8) ∧ (PC1 = 8) ∧ I)
¬∀k ∈ {0, 1}. (PCk = 8)

∧ flag[k] = (3 ≤ PCk ≤ 9)
∧ ((6 ≤ PCk ≤ 8) ∧ ¬tmpk) ⇒ (¬flag[k] ∨ (turn = k) ∨ (PCk = 3))
∧ (PCk = 8) ⇒ ¬tmpk % bring PC0 = 8 and PC1 = 8 inside ∀

≡ ¬∀k ∈ {0, 1}. (PCk = 8)
∧ flag[k] = true

∧ true ∧ ¬tmpk) ⇒ (¬flag[k] ∨ (turn = k) ∨ false )
∧ true ⇒ ¬tmpk, % propagate PCk = 8

≡ ¬∀k ∈ {0, 1}. (PCk = 8)
∧ flag[k] = true

∧ true ⇒ (¬true ∨ (turn = k))
∧ ¬tmpk, % propagate flag[k] and ¬tmpk

≡ ¬∀k ∈ {0, 1}. (PCk = 8)
∧ flag[k] = true

∧ turn = k
∧ ¬tmpk, % boolean algebra

≡ ¬false, % (turn = 0) ∧ (turn = 1) = false

≡ true.

3. Mesh Networks (25 points)

(a) 2-dimensional meshes (5 points) Let m > 0 be an integer, and consider a 2D mesh network consisting of
N = m2 processors. For simplicity, assume that m is even. Each processor can be identified with a tuple,
(i, j), where 0 ≤ i, j < m, and processor (i, j) has links to

processor (i+ 1, j), if i < m− 1;
processor (i− 1, j), if i > 0;
processor (i, j + 1), if j < m− 1;
processor (i, j − 1), if j > 0.

Assume that each link can receive one message on each incoming link and send one message on each
outgoing link using one unit of time.
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Show that if each processor with i < m/2 sends distinct messages to each processor with i ≥ m/2, then
the time to convey these messages to their destinations is O(N3/2).

Note:
• In office hours, I was discussed this problem with a student. I realized just before the HW

was due that my hints led to a proof that the time is Ω(N3/2)m not theO(N3/2) as requested.
• I’ll send a note to Mike and give that student full-credit for a solution that shows the wrong

kind of bound. Furthermore, any student who acknowledges having collaborated with the
student from that office hour will also get full-credit.

• If I got it backwards, I won’t take a hard-line on others who make the same mistake. There
will be two points deducted for making that error in any of parts a, b, or c (but only deducted
once), and an additional three points for the error in part d (because the bound for part d
doesn’t work if you’ve got it backwards in part c).

• I’m including an appendix that has the proofs for the Ω bounds. These are nice, as they show
that the bounds are tight, i.e., we’ve got big-Θ results for each part of this problem.

We can send the messages using dimension routing:
// route along dimension 0
forall j0 in 0..(m-1) {

for i0 in 0..((m/2)-1) {
for i1 in (m/2)..(m-1) {

for j1 in 0..(m-1) {
processor(i0, j0) sends a message that is destined

for processor(i1, j1) to processor(i1, j0);
} } } }

// route along dimension 1
forall i1 in (m/2)..(m-1) {

for j0 in 0..(m-1) {
for i0 in (m/2)..(m-1) {

for j1 in 0..(m-1) {
processor(i1, j0) forwards a message fromprocessor(i0, j0) to processor(i1, j1);

} } } }
To determine the time for the route along dimension 0, note that for any choice of (i0, j0),
processor(i0, j0) can send the messages for the for i1 and for i2 loops one per
cycle without any collisions in the routing. Thus, processor(i0, j0) sends these mes-
sages in time O

(
m
2 ∗m

)
= O(m2

) . When processor(i0, j0) has sent its last message,
processor(i0+1, j0) needs to wait one cycle (for the link from (i0, j0) to (i0+1,
j0) to clear), and then processor(i0+1, j0) can send its m2

2 messages in O
(

m2

2

)
time.

Thus the total time for the for i0 loop is O
(

m
2 (m2

+ 1)
)

= O(m3

) .

A similar analysis shows that the routing along dimension 1 can be completed in O(m3) time.
Thus, the total time is O(m3 +m3) = O(m3) = O(N3/2) as desired.

(b) d-dimensional meshes (5 points) Let m > 0 and d > 0 be integers, and consider a d-dimensional mesh
network consisting of N = md processors. For simplicity, assume that m is even. Each processor can
be identified with a tuple, (i0, i1, . . . , id−1), where 0 ≤ ik < m, and there is a link between a pair of
processors iff all but one of their indices are identical, and they differ by ±1 in the index for which they
are different. Assume that each link can receive one message on each incoming link and send one message
on each outgoing link using one unit of time.
Show that each processors with i0 < m/2 sends distinct messages to each processor with i0 ≥ m/2, then
the time to convey these messages to their destinations is O(N1+ 1

d ).
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We could extend the dimension routing algorithm from question 3a in the obvious way and get
a time bound of O(dmd+1) = O(dN1+ 1

d ). The extra factor of d arises because it takes time
O(md+1) along each dimension.
Note that this simple approach to dimension routing only uses the links in one dimension at a
time. This leads to the factor of d in the time-bound. There are two ways we could improve the
routing:
• Assume that we have a large number of these data shuffling operations to do and pipeline

them. When the first batch finishes routing along dimension 0, then the first batch goes on
to route along dimension 1 while the second batch starts its routing along dimension 0. With
this approach, we can show that the network routes these batches with a throughput of one
batch every O(N1+ 1

d ) cycles, even though each batch has a latency of O(dN1+ 1
d ) cycles.

This is the simplest solution and it mimics the analysis of the hypercube from class. It should
get full credit (even though it doesn’t quite solve the problem as stated).

• We can partition theN2/4 messages that must be sent into (d−1) roughly equally sized sets.
For example, if a message is sent from processor (i0, i1, . . . id−1) to processor (j0, j1, . . . jd−1)
we could assign the message to partion jd−1 mod (d − 1). If m � d, this will produce
roughly equally sized partitions. If m is not large compared with d, we could devise another
partitioning scheme.
We now do dimension-routing on the first d − 1 dimensions (indices 0 through d − 2). For
messages in partition 0, we start by routing along index 0, then index 1, and so on up to
index d−1. For messages in partition k, we start by rouding along index k, then index k+1,
and so on up to index d − 1, then along index 0, then index 1, and so on up to index k − 1.
By analsis similar to that for question 3a, we get that the total time to route one partition
along one dimension is O(mN2/(d − 1)). We can route all of the partitions in parallel,
because each partition is using the links for a different dimension at any given phase of the
routing. Thus, the total time for each dimension is O(mN2/(d− 1)). We route along d− 1
dimensions; so the total time is O(mN2).
We complete the routing by routing along dimension d − 1. This time, we route all N2/4
messages over the links for dimension d− 1. This tames time O(mN2).
The time for the complete route is O(mN2) = O

(
N1+ 1

d

)
.

There are other ways of doing the routing to achieve the desired bound. A typical router
will just route incoming traffice to available outgoing nodes that get the message closer
to its destination. Such greedy routing probably achieves the desired bound as well, but I
don’t have a deriviation in mind. One could reasonably ask if a router could really take the
global data-pattern into account. The answer is “yes.” High-end networks for clusters (such
as Infiniband) provide programmable routers that can be configured for application-specific
routing patterns.

(c) d-dimensional messages (cont.) (5 points) Now consider a d-dimensional mesh, and let A and B be any
partitioning of the processors into two sets of size N/2. Show that if each processor in A sends a distinct
message to each processor in B, then the time to convey these messages to their destinations is O(N1+ 1

d ).

The routing method from the solution to 3b works in this more general case as well, and the same
bound applies. The routing can be done in O

(
N1+ 1

d

)
time.

(d) How big is a d-dimensional mesh? (10 points) Use the result from part (c) to show that if a d-dimensional
mesh of N = md processors is implemented in our 3-dimensional universe, then the volume of the mesh
of processors is Ω(N

3
2 (1− 1

d )). Compare this with the result for a hypercube from the October 9 lecture.

Consider any implementation of a d-dimensional mesh in our 3-dimensional universe. Choose
any orientation for a plane. We can position such a plane so that N/2 processors are on each side
of the plane. Let the processors on one side of the plane be set A as defined in problem 3c and
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the processors on the other side of the plane be set B. Each processor in A can send a distinct
message to each procesosr inB using time Ω(N1+(1/d)). There are Θ(N2) such messages. Thus,

Θ(N2)

O(N1+ 1
d )

= Ω(N1− 1
d )

messages must cross the plane per unit time. This means that there must be Ω(N1− 1
d ) links cross-

ing the plane. Assuming that each link has a cross-sectional area that is Ω(1), the intersection of
the mesh with this plane has a diameter of Ω(N

1
2−

1
2d ). Because this applies for any plane, an

inscribing sphere for the processor has volume of Ω(N
3
2 (1−

1
d )).

While writing the solution, I realize that the problem asked for of O(N
3
2 (1−

1
d )) rather than Ω. In

fact a Θ(N
3
2 (1−

1
d )) result is possible. If a solution messes up big-O vs. big-Ω, it should still get

full-credit – I made the mistake, and this isn’t a theory course!
While writing this solution, I thought about “What if the mesh is arranged as a pancake (i.e. fairly
thin in one dimension)?” The argument about diameter above is good enough for full-credit.
Here’s a way to handle “pancakes”. I’ll assume that anyone who is mathematically oriented
enough to think of this question knows a fair amount about geometry; so, I’ll write my “solution”
without explaining all of the terms.
Let’s define the volume of the mesh as the volume of the smallest convex polyhedron that contains
the mesh. This convex polyhedron has some shortest diametrical chord. Let χ be such a chord and
s be the length of this shortest chord. Now, consider any plane that contains chord χ and divides
the processors of the mesh into two equally sized subsets. As argued above, the intersection of
the mesh with this plane must have area Ω(N1− 1

d ). Because this intersection has a diametrical
chord of length s, the chord perpendicular to this one must have a length of Ω(N1− 1

d /s). As
this is true for any such plane, the area of the mesh when projected onto a plane that is normal to
χ must be Ω(N2− 2

d /s2), and thus the volume of the processor is Ω(N2− 2
d /s). This volume is

minimized by maximizing s. To maximize the length of the shortest chord, we make all chords
the same length. This is exactly the spherical implementation that we considered above, and the
Ω(N

3
2 (1−

1
d )) bound applies.

Finally, one could ask about non-convex implementations. I think the previous case was technical
enough; so, I won’t worry about making it even more complicated.

4. Reduce (38 points) Given any solution (yours, the solution set, a friend’s, etc. – but give proper attribution if
it’s not yours) for finding all prime numbers that are less than or equal to N ,

(a) (10 points) Write code to compute the sum of all primes that are less than or equal to N . You should
measure the time that it takes to compute the sum given that the distributed list of primes has already been
computed. Use the wtree module from the CpSc 418 erlang library. You should to use wtree:create
to create a worker pool where the workers are organized as a binary tree, and wtree:reduce for the
reduce operation to compute the sum. Note that the worker-pool returned by wtree:create can be
used by any of the functions from module workers as well as those from wtree.
In a bit more detail, you should write a module called hw3 that exports the function sum/2 where

sum(W, Key) -> Total

W is a worker pool, Key is the name for the distributed list of primes, and Total is the sum of the primes
in that distributed list.
For example, then the primes that are less than or equal to 100 are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31
37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79
83, 89, 97
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Assume that the primes that are less than or equal to 100 are stored in a distributed list that’s associated
with the atom p100 for worker pool W, and that p90 is a distributed list for the primes that are less than
or equal to 90.

hw3:sum(W, p100).

should print

1060

Likewise,

hw3:sum(W, p90).

should print

963

See sum/2 in hw3.erl.

(b) (5 points) Measure the speed-up of your implementation of sum compared with lists:sum (assuming
that you have already retrieved all of the primes into a single list) when running on gambier.ugrad.cs.ubc.ca
with 64 worker processes.

• What is the speed-up for the value of N for which the sequential version takes 1 second?
• What is the smallest value of N for which the parallel version achieves 80% of the speed up that you

reported above?

For this problem, I wrote functions:
hw3:time sum(Nproc, Pmax, Ntrials): Compute the sum of all primes that are ≤

Pmax sequentially and using Nproc processors. The parameter Ntrials tells time it:t
how many trials to run – if Ntrials is an integer, that is the number of trails to run. If
Ntrials is a float, it runs enough trials to use (roughly) that many seconds.
The return value is a list of two tuples that give the mean and standard deviation of the
run-times for the sequential and parallel versions.

hw3:time sum(Nproc, Pmax): I’m lazy. This is equivalent to hw3:time sum(Nproc,
Pmax, 1.0).

hw3:speedup sum(Nproc, [Pmax1, Pmax2, ...]): Run hw3:time sum(Nproc,
Pmax, 50) for each value of Pmax. Return a list of the form:

[ {Pmax1, SequentailTime1, SpeedUp1},
{Pmax2, SequentailTime2, SpeedUp2},
...

]

hw3:speedup sum/0: This calls hw3:speedup sum/3 with Nproc=64 (as specified
in the problem), and the list of values of Pmax that I used for this problem.

I ran trials for 46 values of Pmax from 10,000 to 40,000,000. The run trial with Pmax =
32, 000, 000 had the run-time closest to 1 second (a mean of 0.995 seconds, closer to 1 second
than the measurement error). The speed-up with Pmax = 32, 000, 000 is 23.9.
Figure 4B shows the sequential run-time and speed-up for the various values of Pmax tried.
The purple markers show the values with Pmax = 32, 000, 000, and the green dashed line is
for SpeedUp = 0 .8 ∗ 23 .9 = 19 .12 . The smallest value of Pmax (that I tried) for which the
speed up is at least 80% of the speed-up when the sequential time was roughly 1 second is with
Pmax = 300, 000. This addresses the literal wording of the question.
The speed-up plot shows an “anomalous” region where the speed-up decreases with larger values
of Pmax. For all values of Pmax (that I tried) that are greater than or equal to 10,000,000, the
speed-up is greater than 19.2. So, 10,000,000 is also a reasonable answer to this question.

9



104 105 106 107 108
10 4

10 3

10 2

10 1

100

101

Pmax

Ti
m

e

Time to sequentially compute sum of primes <= Pmax

104 105 106 107 108
0

5

10

15

20

25

30

Pmax

sp
ee

d
up

Speed up with 64 processes

Figure 4B: Sequential runtime and parallel speed-up for sum-of-primes.

What causes the dip in the speed-up plot for 400, 000 < Pmax < 4, 000, 000? Looking at the
plot of sequentail time versus Pmax, there is an upward shift of the “line” as Pmax goes from
about 65,000 to about 400,000. I suspect that this is because when the list of primes is too long,
it doesn’t fit into the L1 (per-core) cache and requires more L2 cache accesses. In particular, the
first 8 data points can be fit to the line

SequentialTime = Pmax ∗ 13.03ns + 46.63µs rcl

(mean-square-error ≈ 1%). Likewise, the points from Pmax = 400, 000 to Pmax = 4, 000, 000
can be fit to the line

SequentialTime = Pmax ∗ 33.27ms + 2.13ms rcl

The slope increases by a factor of about 2.5, presumably due to cache misses. The change of
slope appears as a “small” displacement of the line because I used a log-log plot.
The parallel version hits the same per-core cache limit when all eight cores hit the limit. This
should occur for a value of Pmax a bit more than 8 times larger than that for the sequential case
(“a bit more” because the primes are less dense for larger values). This matches the plots very
well.

(c) (15 points) Write code to find the pair of consecutive primes with the largest gap, for the primes that are
less than or equal to N . If there is more than one such pair, return the first such pair.
In a bit more detail, module hw3 should export largest gap/2 where

largest gap(W, Key) -> {P1, P2}

W is a worker pool, Key is the name for the distributed list of primes, and {P1, P2} is the pair of primes
in that distributed list with the largest gap.
Continuing the example from part (a),

hw3:largest gap(W, p100).

should print

{89,97}

If the primes that are less than or equal to 90 are stored in a distributed list that’s associated with the atom
p90, then

hw3:largest gap(W, p90).

should print

10
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Figure 4D: Sequential runtime and parallel speed-up for largest-gap-of-primes.

{23,29}

There are seven pairs of consecutive primes less than 90 with a gap of 6, but {23,29} is the first (i.e.
smallest) such pair.

See largest gap/2 in hw3.erl.

(d) (8 points) Write a sequential version of largest gap. Measure the speed-up of your implementation
of largest gap compared with your sequential version (assuming that you have already retrieved all
of the primes into a single list) when running on gambier.ugrad.cs.ubc.ca with 64 worker processes.

• What is the speed-up for the value of N for which the sequential version takes 1 second?
• What is the smallest value of N for which the parallel version achieves 80% of the speed up that you

reported above?

I wrote functions time gap/3, time gap/2, speedup gap/3, and speedup gap/0
in hw3.erl that correspond to the functions described above for measuring performance when
computing the sum of the primes. I used the largest gap leaf function that I wrote for the
parallel version to compute the gap sequentially.
After doing a few trial runs using hw3:time gap/3 to get a guess of where the sequential
run time would reach one second, I ran trials for 39 values of Pmax from 10,000 to 40,000,000.
The run trial with Pmax = 15, 000, 000 had the run-time closest to 1 second (a mean of 0.991
seconds over 50 trials). The speed-up with Pmax = 15, 000, 000 is 24.85.
Figure 4D shows the sequential run-time and speed-up for the various values of Pmax tried.
The purple markers show the values with Pmax = 15, 000, 000, and the green dashed line is
for SpeedUp = 0 .8 ∗ 24 .85 = 19 .88 . The smallest value of Pmax (that I tried) for which the
speed up is at least 80% of the speed-up when the sequential time was roughly 1 second is with
Pmax = 400, 000.
As with the computation of the sum, the speed-up plot shows an “anomalous” region where the
speed-up decreases with larger values of Pmax. It’s not as pronounced as with the computation
of the sum. I’ll guess that this is related to caching behaviour, but this solution set is already long
and late; so, I won’t explore that further now.
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