
CpSc 418 Midterm October 18, 2012

100 points

Time for the exam: 80 minutes.

Open book: anything printed on paper may be brought to the exam and used during the exam.
This includes the textbook, other books, printed copies of the lecture slides, lecture notes,
homework and solutions, and any other material that a student chooses to bring.

Calculators are allowed: no restriction on programmability or graphing. There are a few simple
calculations needed in the exam, a calculator will be handy, but the fancy features will not
make a difference.

No communication devices: That’s right. You may not use your cell phone for voice, text, web-
surfing, or any other purpose. Likewise, the use of computers, iPods, etc. is not permitted
during the exam.

Good luck!



CpSc 418 Midterm October 18, 2012

100 points

Answer all five questions.

1. Erlang (15 points + 3 extra credit).
Draw a line joining each Erlang expression on the left to the value obtained by evaluating that expression on the
right.
Grading: 3 points for each correct line, -1 point for each incorrect line.

Expression Value
lists:map(fun(X) -> 2*X end, [1, 2, 3])

3
lists:foldl(

fun(A, B) -> A*B end,
1, [2, 3, 4]

) 5

(fun(N) ->
G = fun(H, M) ->
case M of 10

0 -> 0;
-> M+H(H,M-1)

end
end, 24
G(G, N)

end)(4)

2 + 3 32

lists:foldl(
fun({X, Y}, A) -> A + X*Y end, 0,
lists:zip([1, 2, 3], [4, 5, 6]) [2, 4, 6]

)

length([1,2,3])

1



2. DLS Talk (10 points).
What is a Craig Interpolant (check one):

2 Craig Interpolants are a method for optimizing functional programs. The compiler computes the interval
between when a variable is declared and when it is last read. If a new “copy” is made following the last
read in order to modify a field, the compiler eliminates the copy and just modifies the existing value.

2 If P and Q are boolean-valued formulas, and there is no way to satisfy both P and Q, then a Craig
Interpolant is a boolean-valued formula, I , such that: P ⇒ I; I ⇒ ¬Q; and all variables that appear in I
appear both P and Q.

2 Given a list of points (x1, y1), (x2, y2), . . . (xn, yn) with x1 < x2 < · · · < xn, a Craig Interpolant is
sequence of polynomials, P1, P2, . . . , PN−1 for interpolating between values of the data. They are similar
to cubic-splines but guarantee that interpolated values are bounded above and below by the values of the
original data.

2 Given an old API for Windows, or Linux, or Java, or Erlang, etc., and given a new version of the API,
a Craig Interpolant is a structured way of writing a interpretation layer that allows programs that were
written for the old API to run on a system with the new version.

2



3. Synchronization (25 points)
A mutual exclusion algorithm for two threads is safe if the two threads cannot be in their critical regions at the
same time. An algorithm is live if any thread that tries to enter the critical region eventually does so.

Dekker’s algorithm was designed to work with a shared memory where no processor is guaranteed uninterrupted
access to the memory for a sequence of two or more reads or writes. For example, if a processor reads a memory
location and then writes a new value to that location, other processors may access the same memory location
between the read and the write. We say that a memory location is shared if it can be read and/or written by both
threads.

In this problem, you will show that any mutual exclusion algorithm that is safe and live must use at least two
shared memory locations. You will do this by showing that an algorithm that uses only one shared memory
location cannot guarantee safety.

(a) (8 points) Consider the part of execution between when a thread leaves its non-critical code and when it
enters its critical section. I will say that a thread in such a state is “trying to enter.” Show that each thread
must read the shared location at least once when trying to enter.

(b) (5 points) Show that each thread must write the shared location at least once when trying to enter.

3



(c) (12 points) Consider a scenario when both threads try to enter at the same time. Note that each thread must
have its first write of the shared location and its last read. Using this (or you can come up with your own
clever approach), describe an ordering of events that leads to a violation of mutual exclusion (assuming
liveness).
Hint: The liveness requirement is only needed in the proof above to rule-out some rather silly “imple-
mentations.” For example, a algorithm that never lets either thread enter its critical region is safe but not
live.

4



0

1

2

3

4

5

6

7

4. Message Passing (25 points)

(a) (10 points) Consider the simple ring network shown in the figure above. For simplicity, messages only
travel clock-wise in the ring. Assume that each link can transfer a message in one unit of time. Now
consider the program:

0. parallel for(int i = 0; i < 8; i++) {
1. while(true) {
2. for(int j = 0; j < 8; j++) {
3. if(i 6= j) {
4. node i sends a message to node j;
5. }
6. }
7. node i receives any messages that have arrived.
8. }
9. }

In other words, each node repeatedly sends messages to all of the other nodes. The receive at line 7 is
just to make sure that all messages are delivered so that the network is never blocked waiting for a node
to accept a message. The nodes have a enough buffering that they can be constantly offering traffic to the
network. Assume that the computations are performed arbitrarily fast; so, the performace is determined
only by how fast the network can deliver messages.
Show that in the long run, each of the eight nodes completes the while loop that spans lines 1–8 once every
28 time units.

5



(b) (10 points) Now, assume that each node takes time t0 total to send one message and receive one message
(regardless of the message length). Assume that a link can transfer a message of length w in w time units.
Derive a formula per iteration of the while loop as a function of t0, w.

(c) (5 points) Make a rough plot of the value of your formula for the case that t0 = 20, and 0 ≤ w ≤ 20. If
you got stuck on (b), you can draw the shape that you think the plot should have and label critical points
on the plot.

6



5. Performance Measurement Loss (25 points) Give a short definition of each term below.

• If there is a mathematical formula associated with the term, write the formula and write a one or two
sentence explaination of its significance.

• Otherwise, give a brief (one or two sentences) definition and a simple example (one sentence).

(a) Amdahl’s Law

(b) Computation overhead

(c) Communication overhead

(d) Non-parallelizable code

(e) Speed-up

7



,

8



,

9


