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CpSc 448B Final Exam December 16, 2011

100 points

Solve any five of the six problems below. If you write solutions (or partial solutions) to all six, please clearly write on
the cover of your exam book which five you want to have graded.

Remark: The process of grading tends to reveal that there can be many, slightly different ways of
interpreting the details of the problem statement. Any reasonable assumptions are acceptable as
long as they are clearly stated or obvious from the solution itself. This solution set gives fairly
detailed descriptions of the solutions that I had in mind for the problems. I have also noted other
legitimate ways to solve some of the problems.
The solutions here are much more detailed that required to get full-credit. I tried to write self-
contained solutions so that someone who wasn’t able to solve the problem could figure out how to do
it based on the solutions here. Perhaps, I should post a shorter version that would be representative
of what I would expect for a full-credit solution – that will have to wait for another term.

1. Reduce and Scan (20 points) Consider a bank account with an initial balance of b0, and two arrays, delta
and interest that describe daily activity in the account:

delta[i] is the net amount deposited in the account on day i (i.e. delta[i] is the sum of the deposits on
day i minus the sum of the withdrawals.).

interest[i] is the daily interest on day i.

If we have entries for n days, then a sequential algorithm for computing the daily account balance would be:

balance[0] = b0;
for(i = 0; i < n; i++) {

balance[i+1] = (balance[i] + delta[i])*(1.0 + interest[i]);
}

Sketch a parallel computation using reduce or scan for each of the three problems below. Grading will be based
primarily on clarity and correctness. Your solution should not be extremely long.

(a) (6 points) Find the third largest entry in delta. You may assume that you have a sequential function
seq top3(v) that takes as an argument an array, and returns an array consisting of the three largest
elements of that array.

Solution: My leaf function takes the uses seq top3(...) to find the three largest elements of each
subarray. I assume that the array returned by seq top3(...) has the three largest elements in
descending order. My combine function takes two arrays of three values (the largest three in each
subarray), and produces an array consisting of the three largest of those six. My root function
takes the third largest element from its array. To handle corner cases where a subarray has fewer
than three elements, I assume that I can use a special value, NEG INFINITY; seq top3(...)
will set elements of its result to this if needed; and that NEG INFINITY tests to be less than any
other integer. Here are the functions:
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int[] leaf() {
return(seq top3(delta)); // I’m assuming that delta, etc. are visible in this

} // process/thread’s methods.

int[] combine(int[] left, int[] right) {
int i left = 0, i right = 0;
int[] merge = new int[3];
for(int i = 0; i < 3; i++) {

if(left(i left) >= right(i right)) merge[i] = left(i left++);
else merge[i] = right(i right++);

}
return(merge);

}

int root(int[] top3) {
return(top3[2]);

}

To compute the third largest element of delta evaluate:

reduce(leaf, combine, root)

(b) (7 points) Determine the final balance of the bank account described above. This is the same as balance[n]
described above. For this problem, you just need to compute the final balance. You don’t need to compute
all of the elements of the balance array.

Solution: This time, I’ll use reduce in pidgin erlang – it makes tuples simpler. My Leaf function
computes the amortized (accumulated with interest) value for its interval of the dates and the
compounded interest for that interval. My Combine function multiplies the amortized value from
the left by the compounded interest rate from the right, and adds this to the amortized value
from the right to get the amortized value for the entire interval. The compounded interest for the
combined interval is the product of the compounded interest from the left and the compounded
interest from the right. The Root function just returns the amortized value for the entire tree. I’m
assuming that processes have a get function that does the obvious thing (Erlang actually provides
such a get). Here’s the code:

value([], [], V) -> V;
value([H delta | T delta], [H rate | T rate], {Balance, Interest}) ->

value( T delta, T rate,
{Balance*(1.0 + H rate) + H delta, Interest*T rate}).

Leaf = fun() -> value(get(delta), get(interest). {0.0, 1.0}) end.
Combine = fun({L bal, L rate}, {R bal, R rate}) ->
{L bal * R rate + R bal, L rate * R rate}.

Root = fun({Balance, Rate}) -> Balance.

To compute the final balance, evaluate the expression

reduce(Leaf, Combine, Root)
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(c) (7 points) Determine the daily balance of the bank account described above. In other words, produce an
array, balance[i] for 0 ≤ i ≤ n.

Solution: This is a simple variant of the solution to part b. We can use Leaf from part b as Leaf1 and
Combine from part b as our Combine. We just need Leaf2 and Acc0. The Leaf2 function will
take the balance from the its AccIn parameter and use this as the starting balance for updating
the daily balance for its array. Acc0 should describe an initial balance of 0. It doesn’t matter what
the compounded interest is; I’ll set it to 1 as that is the identity element for these rates. Here’s the
code:

balance([], [], BalIn, BList) -> BList; % BList out?
balance([H delta | T delta], [H rate, T rate], BalIn, BList) ->

NewBalance = BalIn*H rate + H delta, % a running shoe?
balance(T delta, T rate, NewBalance, [NewBalance | BList]).

Acc0 = {0, 1}.
Leaf1 = Leaf.
Leaf2 = fun({BalIn, }) ->

putbalance,
lists:reverse(balance(get(delta), get(interest), BalIn))).

To compute the daily balances, evaluate the expression

scan(Leaf1, Leaf2, Combine, Acc0)

You should use reduce or scan functions that are equivalent to those defined in the wtree module (the erldoc
for those functions is included at the end of this document). You don’t have to write your solution in Erlang –
you can use Erlang, Peril-L, or pidgin versions of C, C++, or Java, as long as your use of reduce and/or scan is
clear, and consistent with the wtree versions. If you use a distributed approach, you can assume that the arrays
(or lists) for delta and interest are distributed across the processors before your functions are called, and
your balance array (or list) should be likewise distributed at the end of your solution to part c. You can assume
that a process can remember its state and thus omit the “process state” stuff from wtree.
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2. Data Transposition (20 points) Consider a computation involving P processes with each process running on
a different processor. For 0 ≤ i < P , let pi denote the ith process. Each process, pi has an array, Xi, of P
objects, where each object consists of B bytes. Let Xi,j denote the jth element of the array Xi. We want to
“deal” each process’s data amongst all of the processes. At the end of this operation, each process, pi will have
an array, Yi of P objects where each object consists of B bytes such that for all 0 ≤ i, j ≤ P , Yi,j = Xj,i.
Thus, we can think of Y as a kind of transpose of X .

We’ll perform the transpose described above by sending messages between processors. Assume that sending a
message of B bytes between two processors takes time

t0 + t1 ∗B

for some constants t0 and t1.

(a) (7 points) A simple implementation has each processor send P − 1 messages of B bytes each to each of
the P − 1 other processors. Likewise, each processor will receive P − 1 messages of B bytes each from
each of the P − 1 other processors. Write an expression for the elapsed time (i.e. wall-clock time from
starting the operation until it finishes) to perform the transpose, Telapsed in terms of B, P , t0, and t1.

Solution: Telapsed = (P − 1) ∗ (t0 + t1 ∗B)

(b) (7 points) Another approach works by handling one bit of the indices at a time. For example, if i is even,
then the “bit-0 partner” of pi is pi+1. Likewise, if i is odd, then the bit-0 partner of pi is pi−1. At the
first step of this, every processor, pi with i even sends all of its odd-indexed blocks to its bit-0 partner, and
every odd-indexed processor sends all of its even indexed blocks to its bit-0 partner. We then do a similar
swap based on the bit 1 of the processor index (the bit in the 2’s place), then bit 2 (the bit in the 4’s place)
and so on. Here is pseudo code for the algorithm:

G = log2(P); // assume P is a power of 2
forall i in 0..P-1 { // all processors in parallel

M = array of P/2 elements of size B
for(k = 0; k < G; k++) {

mask = 1 << k; // k has a 1 in the kth bit
partner = i ∧ mask; // our bit-k partner
// set M to have all blocks of X where the kth bit of the block index differs from
// the kth bit of the process index.
jj = 0;
for(j = 0; j < P; j++)

if((j & mask) != (i & mask))
M[jj++] = X[j];

send(partner, M);
receive(partner, M);
// update our blocks
jj = 0;
for(j = 0; j < P; j++)

if((j & mask) != (i & mask))
X[j] = M[jj++];

}
}

Write an expression for the total time elapsed time to perform the transpose, Telapsed in terms ofB,P, t0, andt1.
Solution: Telapsed = log2(P ) ∗ (t0 + t1 ∗ P ∗B/2)

(c) (6 points) Assume t0 = 100, t1 = 1, and P = 1024. Which approach is faster if B = 1? Which approach
is faster if B = 1024?
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Solution: If B = 1 then the first approach requires time (1024 − 1) ∗ (100 + 1 ∗ 1) = 103, 323, and the
second requires time log2(1024) ∗ (100 + 1 ∗ 1024 ∗ 1/2) = 6120. In this case, the second method is
about 17 times faster than the first.
If B = 1024 then the first approach requires time (1024 − 1) ∗ (100 + 1 ∗ 1024) = 1, 149, 852, and
the second requires time log2(1024) ∗ (100 + 1 ∗ 1024 ∗ 1024/2) = 5, 243, 880. In this case, the first
method is about 5 times faster than the second.
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Figure 1: Two sorting networks

3. Sorting Networks Consider the two sorting networks shown in figure 1. One of them sorts all inputs correctly,
and the other does not.

(a) (10 points) Determine which network is the correct network. Hint, the incorrect one fails for one of the
two inputs listed below:

x = [2, 3, 0, 1, 5, 4]
x = [3, 1, 0, 5, 2, 4]

Note: these vectors are listed with x5 on the left and x0 on the right – this was clarified during the exam.
Solution: The second vector is a counter-example to the second sorting network:

Network 1 Network 2
line input A B C D output line input E F G H I output

5 3 3 5 5 5 5 5 3 3 5 5 5 5 5
4 1 1 4 4 4 4 4 1 1 1 1 1 3 3
3 0 5 3 3 3 3 3 0 5 3 3 3 1 4
2 5 0 2 2 2 2 2 5 0 2 2 2 4 1
1 2 4 1 1 1 1 1 2 4 4 4 4 2 2
0 4 2 0 1 1 1 0 4 2 0 0 0 0 0

For good measure, I’ll show what the other vectors do. Both networks sort the first vector correctly:

Network 1 Network 2
line input A B C D output line input E F G H I output

5 2 3 3 5 5 5 5 2 3 3 5 5 5 5
4 3 2 5 3 4 4 4 3 2 2 2 2 4 4
3 0 1 1 4 3 3 3 0 1 1 1 4 2 3
2 1 0 4 1 2 2 2 1 0 4 4 1 3 2
1 5 5 2 2 1 1 1 5 5 5 3 3 1 1
0 4 4 0 0 0 0 0 4 4 0 0 0 0 0
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Now, I’ll try the two test vectors in reverse order. Both networks sort the reversed version of the
first vector correctly.

Network 1 Network 2
line input A B C D output line input E F G H I output

5 4 5 5 5 5 5 5 4 5 5 5 5 5 5
4 5 4 4 4 4 4 4 5 4 4 4 4 4 4
3 1 1 1 2 2 3 3 1 1 1 1 2 2 3
2 0 0 2 1 3 2 2 0 0 2 2 1 3 2
1 3 3 3 3 1 1 1 3 3 3 3 3 1 1
0 2 2 0 0 0 0 0 2 2 0 0 0 0 0

Both networks sort the reversed version of the second vector correctly as well.

Network 1 Network 2
line input A B C D output line input E F G H I output

5 4 4 5 5 5 5 5 4 4 5 5 5 5 5
4 2 2 3 4 4 4 4 2 2 2 2 4 4 4
3 5 5 4 2 2 3 3 5 5 4 4 2 2 3
2 0 0 1 1 3 2 2 0 0 1 1 1 3 2
1 1 3 2 3 1 1 1 1 3 3 3 3 1 1
0 3 1 0 0 0 0 0 3 1 0 0 0 0 0

It’s sorted correctly by both networks

(b) (10 points) Give an input consisting only of zeros and ones that the incorrect network fails to sort correctly.
Solution: We start with the counter example described above for the second sorting network:

x5
x4
x3
x2
x1
x0

 =


3
1
0
5
2
4

 -Network 2


5
3
4
1
2
0

 =


y5
y4
y3
y2
y1
y0


Sorting networks commute with monotonic functions; so, I’ll pick a threshold for the elements of
these vectors that will cause the network to fail. For example, the elements with the values of 1 and
2 come out in the wrong order. Noting that 1 < 1.5 < 2, I’ll choose x′ = (x > 1.5) as my solution:

Network 2
line input E F G H I output

5 1 1 1 1 1 1 1
4 0 0 0 0 0 1 1
3 0 1 1 1 1 0 1
2 1 0 1 1 1 1 0
1 1 1 1 1 1 1 1
0 1 1 0 0 0 0 0

Thus, 
x5
x4
x3
x2
x1
x0

 =


1
0
0
1
1
1


is a vector consisting only of zeros and ones that is sorted incorrectly by the second network.
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4. Bitonic Merge (20 points) Let x0, . . . xn−1 be a bitonic sequence. Let y be the sequence with:

yi = min(xi, xi+n
2

), if i < n
2

= max(xi, xi−n
2

), if i ≥ n
2

(a) (10 points) Prove ∀0 ≤ i < n
2 . yi ≤ yi+n

2
.

Solution: For all 0 ≤ i < n
2 , yi = min(xi, xi+n

2
) ≤ max(xi, xi+n

2
) = xy+n

2
= y. Thus, yi ≤ yi+n

2
as

required.
I had really meant to ask you to show that for all 0 ≤ i < n

2 and all n
2 ≤ j < n

yi ≤ yj .

This is a nice warm-up for part b; so, I’ll prove this stronger claim as well. The main impact of this
change is that I put a few more points on the “easy” half of the problem than I otherwise would
have. The combination of parts a and b remain what I had originally planned.
As noted in the hints, we only need to consider x vectors for which each element is either zero or
one. Graphically, we’ve got:

xn
2

xn
2 +1 . . . xn−1

x0 x1 . . . xn
2−1

-c&s yn
2

yn
2 +1 . . . yn−1

y0 x1 . . . yn
2−1

where “c&s” denotes the compare-and-swap operations described in the problem statement. In
particular, the lower element in each column for y is the smaller of the two elements in the corre-
sponding column for x, and the upper element in each column for y is the larger of the two elements
in the corresponding column for x.
I will show that for any choice of x that is bitonic, either y0, . . . yn

2−1 are all 0, or yn
2
, . . . yn−1 are

all 1, and the claim follows immediately.
Using the depiction of the x and y vectors above, I’ll refer to x0, . . . xn

2−1 as the lower row of x and
xn

2
, . . . xn−1 as the upper row, and likewise for y. If either row of x consists entirely of zeros, then

the lower row of y will consist entirely of zeros, and the claim holds. Likewise, if either row of x
consists entirely of ones, then the upper row of y will consist entirely of ones and the claim holds.
Thus, we only need to consider the case when both rows of x are mixed.
I’ll consider the case where x0 = xn−1 = 0. The case when x0 = xn−1 = 1 is nearly the same. This
means that there is an i and j with 0 < i < j < n− 1 such that:

xk = 0, for all k with 0 ≤ k < i
= 1, for all k with i ≤ k < j
= 0, for all k with j ≤ k < n

Graphically, this looks like:

xn
2

xn
2 +1 . . . xj−1 xj . . . xi+n

2−1 xi+n
2

. . . xn−1
x0 x1 . . . xj−n

2−1 xj−n
2

. . . xi−1 xi . . . xn
2−1

=
1 1 . . . 1 0 . . . 0 0 . . . 0
0 0 . . . 0 0 . . . 0 1 . . . 1

This is the same arrangement as we had with mesh sort from homework 4, and I’ll use the same
argument to show that after the compare-and-swap operations are performed, either the lower row
will be all zeros, or the upper row will be all ones. In both cases the claim holds.
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If j− i < n
2 (the case depicted above), then for all k with 0 ≤< n

2 either k < i in which case xk = 0
or k+ n

2 > j in which case xk+n
2

= 0. In either case, min(xk, xk+n
2

) = 0, and y0, . . . yn
2−1 are all 0.

Likewise, if j − i ≥ n
2 , then for all k with 0 ≤< n

2 , either k < i in which case k + n
2 > j and

xk+n
2

= 1, or i ≤ k < n
2 in which case xk = 1. In either case, max(xk, xk+n

2
) = 1, and yn

2
, . . . yn−1

are all 1.
This completes the proof.

(b) (10 points) Prove that the sequence y0 . . . yn
2−1 is bitonic.

Solution: Divide x and y each into two rows as in my solution to the stronger version of part a. If either
row of x is all zeros, then the bottom row of y is all zeros, and is trivially bitonic. If either row of
x is all ones, then the bottom row of y is the same as the other row of x. Because any subsequence
of a bitonic sequence is bitonic, the bottom row of y is bitonic in this case as well. Thus, as in part
a, the main case is when both rows of x are mixed.
If both rows of x are mixed, then let i and j be defined as in part a. If j − i < n

2 ,

xn
2
. . . xn−1 : 1 1 . . . 1 0 . . . 0 0 . . . 0

x0 . . . xn
2−1 : 0 0 . . . 0 0 . . . 0 1 . . . 1

then (as shown in part a), y0, . . . yn
2−1 are all 0, in which case y0, . . . yn

2−1 is trivially bitonic.
If j − i ≥ n

2 ,

xn
2
. . . xn−1 : 1 1 . . . 1 1 . . . 1 0 . . . 0

x0 . . . xn
2−1 : 0 0 . . . 0 1 . . . 1 1 . . . 1

then
yk = 0, for all k with 0 ≤ k < i

= 1, for all k with i ≤ k < n− j
= 0, for all k with n− j ≤ k < n

2

Thus, y0, . . . yn
2−1 is bitonic.

Note that n
2 < j < n, thus 0 < n− j < n

2 .

Hints: Because y is computed from x using compare-and-swap operations, this is a sorting network. Thus, it is
sufficient to prove the claims for inputs consisting only of zeros and ones.
It is also the case that the sequence yn

2
, . . . yn−1 is bitonic. The proof is, of course, essentially a copy of the

proof for part b. To keep the problem short, I didn’t ask you to show that.
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5. Energy Trade-Offs (20 points) We have often noted that processor performance is limited by power dissipation.
Consider the naı̈ve implementation of dynamic programming from the lecture. Using this algorithm, the elapsed
time to compute the editing distance between two strings of length N using P processors is:

Telapsed = tupdateN
2, if P = 1

Telapsed = t0P + t1N + tupdate
N2

P , if P > 1

Note: I’ve made the simplification that P − 1 ≈ P for any P > 1, and absorbed some factors of 2 into the other
constants.

Now, I’m going to consider the time and energy required for communication and computation. I’ll assume that
the time and energy required for computation can be scaled such that EcomputeTcompute is constant. In other
words, if the processor runs at half the speed, it uses one half the energy per operation. This is the same as saying
that the power consumption of the processor is proportional to the square of the speed at which it is running. I’ll
assume that the energy for communication is proportional to the time for communication, and that these values
can’t be scaled. With this model, we get:

Telapsed = Tcommunicate + Tcompute

Tcommunicate = 0, if P = 1
= t0P + t1N, if P > 1

Tcompute = tupdate

(
N2

αP

)
Etotal = Ecommunicate + Ecompute

Ecommunicate = Tcommunicate

Ecompute = α2Tcompute

In these equations, α says how fast the processor is run: if α = 1, the processor is run at its “nominal” speed; if
α = 2, the processor is run at twice its nominal speed; if α = 0.5, the processor is run at one half its nominal
speed; and so on.

Now, assume that N = 10, 000, t0 = 1000, t1 = 10, and tupdate = 1.

(a) (6 points) What are the time and energy if the computation is performed on one processor running with
α = 1?

Solution: Tcommunicate = 0, and Tcompute = 100, 000, 000. Thus, Telapsed = 100, 000, 000, and Etotal =
100, 000, 000.

(b) (7 points) What are the time and energy if the computation is performed on 100 processors with α = 0.1?
Solution: Tcommunicate = 200, 000; Tcompute = 10, 000, 000; Ecompute = α2Tcompute = 100, 000. Thus,

Telapsed = 10, 200, 000, and Etotal = 300, 000.

(c) (7 points) Let’s say that I have a performance requirement of computing the editing distance between
the two strings with an elapsed time of 107 time units. What values of α and P minimize the energy
consumption?
Hint: I found that a mix of derivation and trying a few values works pretty well. I’ll give significant partial
marks for finding reasonably good approximations of α and P .

Solution: First, I’ll figure out what the value of α is as a function of P :

Telapsed = t0P + t1N + tupdate
N2

αP

107 = 103P + 105 + 108

αP

α = 108

(9.9∗106−103P )P

The total energy is

Etotal = t0P + t1N + αtupdate
N2

P

= 103P + 105 + 1016

(9.9∗106−103P )P 2
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I could try differentiating with respect to P , but the prospects look painful. A more practical
approach is to try a few values of P , for each value of P , calculate the corresponding α, and then
E. Here’s the sequence that I tried:

P α Etotal

100 0.1020 302, 041
200 0.0515 325, 773
150 0.0684 295, 584
125 0.0818 290, 473
135 0.0759 291, 190
130 0.0787 290, 583
127 0.0806 290, 440 ← optimum
126 0.0812 290, 445
128 0.0799 290, 459

I conclude that the minimum energy is achieved with P = 127 and α = 0.0806. I’ll note that the
optimum is quite flat. Furthermore, the model is very rough approximation of any plausibly real
system. So, I’ll accept for full credit any answer that comes to within 5% of optimal energy as
long as the method for getting it was reasonable. That means that any P with 98 ≤ P ≤ 168 is
acceptable along with the corresponding α. So, you can get full credit even if you didn’t spend a
bunch of time punching different guesses for P into your calculator.
To entertain those who want to see how far you can get by differentiating and simplifying, I
differentiated the expression for Etotal with respect to P and got:

d
dP Etotal = 103 − 1016(1.98∗107P−3∗103P 2)

(9.9∗106−103P )2P 4

I’ll assume that 0 < P < 9.9 ∗ 103, in which case the derivative is non-singular. It’s equal to zero if

103 ∗ (9.801 ∗ 1013 − 1.98 ∗ 1010P + 106P 2)P 3 − 1016(1.98 ∗ 107 − 3 ∗ 103P ) = 0
⇔ (9.801 ∗ 107 − 1.98 ∗ 104P + P 2)P 3 − 107(1.98 ∗ 107 − 3 ∗ 103P ) = 0
⇔ P 5 − 1.98 ∗ 104P 4 + 9.801 ∗ 107 ∗ P 3 + 3 ∗ 1010P − 1.98 ∗ 1014 = 0

I don’t see any obvious way to factor this polynomial. Numerically, it’s easy to show that this
polynomial has a root near 126.6839, which confirms the choice of P = 127 as optimal. Of course,
if anyone has a way to make further progress with an analytical approach, I’ll be happy to see what
you come up with.

Remark: After the exam, a few students pointed out to me that it would have been more realistic if I
had modeled the energy for computation as:

Ecompute = α2PT compute

– this includes a factor of P that wasn’t included in the problem statement. I agree. Of course,
I graded based on the stated problem, but I would have happily given extra credit if anyone had
solved this “improved” problem and stated why it is better. Oh, right. It’s better because the
α2T compute model just takes into account the energy reduction on a single processor. However,
the parallel version has P processors running, and we should account for the total power of all P
processors combined.
With this revised model for E compute the solution to part b has E communicate = 200, 000 as
before, but E compute becomes 10,200,000, which yields E total = 10, 400, 000.
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For part c, the formula for α as a function of P remains:

α = 108

(9.9∗106−103P )P

Using revised model for E compute yields:

Etotal = t0P + t1N + N4

(T elapsed−t0P−t1N)P tupdate

= 103P + 105 + 1016

(9.9∗106−103P )P

Plugging in various guesses for P yields a minimum at P = 999 for which α = 0.0112 and E =
2, 236, 594. It’s not surprising that the minimum energy increases – the energy for computation for
any give choice of P and α is larger. Also, it makes sense that the optimal value of P increases.
We’ve increased the energy for computation; so there is a greater incentive to reduce the energy for
computation at a cost of increasing the energy for communication.
For the amusement of those who prefer analytical approaches, differentiated the E total with respect
to P to get:

d
dP Etotal = 103 − 1016(9.9∗106−2∗103P )

(9.9∗106−103P )2P 2

And d
dP Etotal = 0 when

P 4 − 1.98 ∗ 104P 3 + 9.801 ∗ 107P 2 + 2 ∗ 1010P − 9.9 ∗ 1013 = 0

I don’t see an obvious way to factor this polynomial (sure, there’s a closed form solution for factoring
quartics,

http://en.wikipedia.org/wiki/Quartic_function,

but it’s pretty messy, and I seriously doubt it would lead to an enlightening solution. A numerical
solution shows that P ≈ 998.6921 is a root of the polynomial above. This is consistent with the
choice of P = 999 as the optimal number of processors.
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6. Potpourri (20 points)

(a) (4 points) What is “idle processor overhead”? Give a short definition and a simple example.
Solution: This is a loss of performance relative to an ideal speed-up of P for a parallel comptuer with P

processors due epochs when there are processors that are not performing any useful computation.
Often, this happens at the beginning or end of a parallel computation when only one or a few
processors are busy. Here are a few examples (one is sufficient):

• The MPI implementation of dynamic programming that we studied initially has only one
processor busy. Each time, that processor completes a “block”, it can dispatch work for another
processor. Thus, the first processor must complete P − 1 blocks before P processors can all be
busy. A similar issue occurs at the end of the computation.

• The reduce operation uses a tree to combine results. This requires log2 P phases of operation,
and all processors are busy only for the first phase. In each successive round, half of the active
processors become idle. Thus, on average 2

logP P processors are busy. Similar scenarios arise
for broadcast or scan operations.

• LU decomposition was described in a fair amount of detail in the book and in less detail in
lecture as an algorithm that has idle processors at the end. As the computation progresses, a
smaller and smaller fraction of the original matrix is being modified. A simple block allocation
scheme results in 3

4 of the processors being idle after half of the total compute time. Finer
grained, block-cyclic work allocations can mitigate this problem.

(b) (4 points) What is “communication overhead”? Give a short definition and a simple example.
Solution: This is a loss of performance relative to an ideal speed-up of P for a parallel computer with

P processors due to the time spent for communication. This time can includes CPU time for
coordinating message transfers with a network interface (and context switches to run other tasks
while waiting for message) and the network latency. Here are a few example:

• In the MPI implementation of dynamic programming that we studied, we saw that making
the tableau blocks to small resulted in extra overhead to send and receive a large number of
messages.

• In fact, pretty much every parallel algorithm involves some communication and the associated
overhead. It’s easy to find communication overhead in count-3s, matrix multiply, reduce and
scan, etc. Any of these are acceptable examples.

(c) (4 points) What is “false sharing”? Give a short definition and a simple example.
Solution: False sharing occurs in a shared-memory multiprocessor when threads running on two different

processors are repeatedly accessing different parts of the same cache block, and at least one of the
threads is modifying the block. This causes cache block invalidations, transfers of ownership, and
cache misses even though no data is actually being transfered between the threads.
The text book gave an example of false sharing with the count 3’s program when the per-thread
tallies were stored in a global array. Each thread updated a different element of this array. Because
these elements could be on the same cache line, the extra cache misses arising from this false sharing
made the parallel program slower than the sequential one. Many other examples are possible.
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Figure 2: A 3× 6 2-dimensional torus

(d) (4 points) What does SIMD stand for? Given a example of a processor architecture that exploits SIMD
parallelism.

Solution: SIMD = Single Instruction Multiple Data.
A single instruction stream controls multiple functional units that each perform the same operation
on different streams of data values. Example include:

• GPUs: for example nVidia calls it “SIMT” for “Single Instruction, Multiple Threads” because
of some of the generalizations that they’ve made.

• MMX extensions: media extensions for the x86 and other processors exploit data parallelism
in an SIMD fashion.

• The IBM/Sony/Toshiba Cell processor uses SIMD processing in its “synergistic processing
units.”

• and there are many other examples.

(e) (4 points) Draw a diagram illustrating a 3×6 2-dimensional torus. Assume that each link has a bandwidth
of 1 Gbit per second in each direction. Divide the processors into two groups of nine such that each
processor in the first group sends a 1 megabyte message to a processor in the second group. Draw a dashed
line on your diagram to show how to split the processors into two groups that will maximize the time
required to send these messages. If the time to send the messages is determined entirely by the bandwidth
of the network (i.e., ignore all other overheads), how long does it take to send these nine messages from
one group of processors to the other?

Solution: See Figure 2 for the figure. There are 6 links connecting the nine processors on the left from the
nine on the right. These provide 9 Gbits/second of total bandwidth. Each of the left processors sends
1 Mbyte to a processor on the right for a total of 72 Mbits of data transfered. Assuming that the
time is entirely determined by the bandwidth constraint, it will take 7 Mbits/(9 Gbits/sec) = 12 ms
to send these messages.
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Reduce and Scan Documentation
reduce(Leaf, Combine, Root)

A generalized reduce operation. The Leaf function is applied at each leaf of the process tree. The Leaf1 function
has no arguments – it operates on the local state the worker process in which it’s applied. The results of these are
combined, using a tree, using Combine. The Combine function has two arguments: the cumulative value for the
left subtree of the current node, and the cumulative value for the right subtree. The Combine function produces the
cumulative value for the subtree rooted at the current node. The Root function is applied to the final result from the
combine tree to produce the result of this function.

scan(Leaf1, Leaf2, Combine, Acc0)

A generalized scan operation. The Leaf1 function is applied at each leaf of the process tree. The Leaf1 function
has no arguments – it operates on the local state the worker process in which it’s applied. The results of these are
combined, using a tree, using Combine. The Combine function has two arguments: the cumulative value for the
left subtree of the current node, and the cumulative value for the right subtree. The Combine function produces the
cumulative value for the subtree rooted at the current node. The return value of the scan is the result of applying the
Combine function at the root of the tree. Furthermore, the Leaf2 function is applied in each worker process. The
Leaf2 function has one argument, AccIn which is the the result of Combine for everything to the left of this node
in the tree. For the leftmost process, Acc0 is used.

Often, scan is used for the local updates performed by Leaf2, and the return value (the result of applying
Combine at the root of the process tree) is ignored. Of course, the results the applications of Leaf1 and Combine
are used to produce the arguments passed to Leaf2.
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