
CpSc 418 Final December 12, 2012

100 points

1. DLS talk (5 points)
Judea Pearl’s talk: “The Mathematics of Cause and Effect” made frequent use of the term “counterfactual.”
What word or phrase below best describes “counterfactual” as Pearl used it in his talk:

(a) a false statement;

(b) an ancient story or account such as the Garden of Eden or the destruction of Sodom;

(c) a paradox;

(d) a “what if?” scenario;

(e) a rebuttal to an argument.

Solution: d.

2. Short definitions (20 points). Give a short definition for each term below. Give a brief (one or two sentences)
definition and a simple example (one or two sentences).

(a) deadlock

Solution:
A cycle of processes or threads where each is blocked waiting for the next process in the process
in the cycle. Example 1: thread 0 holds a lock that thread 1 is trying to acquire and vice-versa.
Example 2: Process 1 is waiting to receive a message from process 2, and will then send some-
thing to process 2, and vice-versa.

(b) livelock

Solution: A situation where two or more processes are busy interfering with each other in a way
such that none of them make any progress. Example: several processes could be attempting to
acquire the same lock. Each tries to get the lock, sees that another process is trying to get the
lock, backs off and tries again.

(c) the zero-one principle

Solution: If a sorting network sorts all inputs consisting only of 0’s and 1’s correctly, then it sorts
all inputs (arbitrary values of any type with an ordering relation) correctly.

(d) termination detection

Solution: Determining that an ensemble of processes have all completed. Example, the method
in Stern & Dill’s distributed model checking algorithm that checks message-sent and message-
received counts (and suppresses sending new messages) when checking to see if all of the worker
processes are done.

1

{1, 3, 4, false, −3, 1}

16 23 21−1 0 8 13

by process 0
combine

by process 0
combine

by process 0
extract fields of interest

1 2 23

{−1, 5, 5, false, 21, 1}

P0 ! {−1, 5, 5, false, 21, 1}

P0 ! {4, 3, 3, false, −3, 1}

by process 2
combine

P2 ! {21,1, 2,false, 21, 1}

{1, 3, 5, false, 21, 1}

4 6 7 −2 −2

local
computation
by process 1

local
computation

{1, 3, 3, false, 2, 1}

by process 0

{{4, 3, 3, false, −3, 1}

local
computation
by process 2

Final result: 5

{−1, 4, 4, true, −1, 4}

local
computation
by process 3

{21, 1, 2, false, 21, 1}

21

Figure A-Q3.a: Example of the reduce.

3. Reduce (25 points) Given a list of numbers, report the length of the longest non-descending sequence, in other
words the length of the longest sequence of the form xi, xi+1, . . . xi+k such that xi ≤ xi+1 ≤ · · · ≤ xi+k. For
example,

longest ascending([1, 2, 3, 2, 4, 6, 7,-2, -3, -1, 0, 8, 13, 21, 16, 23, 21])

is 6.

(a) (5 points) Draw a figure showing how this computation can be performed with four processes using a
reduce. Assume that the list is distributed over the processes as shown below:

Process 0: [1, 2, 3, 2]
Process 1: [4, 6, 7, -2, -3]
Process 2: [-1, 0, 8, 13]
Process 3: [21, 16, 23, 21]

Solution: See Figure A-Q3.a.

(b) (5 points) Describe the type for the value that you will pass up the tree to do the reduce. For example, “a
tuple of three elements where the first element is. . . ”, or “an integer”, or “a list of . . . ”, etc.

Solution:
If the local portion of the list is non-empty, then a triple of the form:

{LeftVal, LeftLen, MaxLen,Span, RightVal, RightLen}
where:
LeftVal is the leftmost value under this subtree;
LeftLen is the length of longest ascending sequence starting at the leftmost element

(LeftLen = 1 if the leftmost value is greater than the next value.);
MaxLen is the length of longest ascending sequence for this subtree;
Span is true iff the entire subtree is one ascending sequence;

2

RightVal is the rightmost value under this subtree; and
RightLen is the length of longest ascending sequence ending at the rightmost element of

the subtree.
Otherwise, an empty tuple.

(c) (5 points) Sketch a function to use at the leaves of the tree to perform this reduce. You can write it in
erlang, C, Java, or any reasonable resemblance of any of those languages.

Solution:
leaf([]) -> {};
leaf([LeftVal | T]) -> Leaf({LeftVal, 1, 1, true, LeftVal, 1}, T).
leaf(V, []) -> V;
leaf({LV, LL, ML, Sp, RV, RL}, [H | T]) when (H >= RV) and Sp ->

leaf({LV, LL+1, ML+1, Sp, H, RL+1}, T);
leaf({LV, LL, ML, Sp, RV, RL}, [H | T]) when (H >= RV) and (RL == ML) ->

leaf({LV, LL, ML+1, Sp, H, RL+1}, T);
leaf({LV, LL, ML, Sp, RV, RL}, [H | T]) when (H >= RV) ->

leaf({LV, LL, ML, Sp, H, RL+1}, T);
leaf({LV, LL, ML, Sp, RV, RL}, [H | T]) ->

leaf({LV, LL, ML, false, H, 1}).
The rules for leaf/2 say:
If the current value of the list, H, is greater than or equal to the previous value, RV, and the entire

list as been ascending, then increment LL (i.e. LeftLen), ML (i.e. MaxLen), and RL (i.e.
RightLen);

Otherwise, if the current value of the list is greater than or equal to the previous value and the
ascending sequence at the right is the longest one so far, then increment ML and RL; RL (i.e.
RightLen);

Otherwise, if the current value of the list is greater than or equal to the previous value, increment
RL.

If the list is empty, return the tuple that we’ve generated in the previous steps.

(d) (5 points) Sketch a function to use to combine values from subtrees. Use the same notation as you chose
for part c.

Solution:
combine({}, Right) -> Right;
combine(Left, {}) -> Left;
combine({LV1, LL1, ML1, Sp1, RV1, RL1}, {LV2, LL2, ML2, Sp2, RV2, RL2}) ->

Extend = RV1 =< LV2,
{ LV1,
LL1 + if (Sp1 and Extend) -> LL2; true -> 0 end,
max(max(ML1, ML2, if (Extend) -> RL1 + LL2; true -> 0)),
Sp1 and Sp2,
RV2,
RL2 + if (Sp2 and Extend) -> RL1; true -> 0 end

}

(e) (5 points) Sketch a function to generate the final answer given the result of the combine at the root.
Solution:

root({}) -> 0;
root({ LV, LL, ML, Sp,, RV, RL} -> ML.

Each of your functions descriptions should be short.

3

4. Peril-L and Pthreads (25 points) Peril-L has full/empty variables. There isn’t a direct equivalent in POSIX
threads. Figure 2 shows a one way that full/empty variables could be implemented using POSIX threads.

(a) (10 points) Write the body for function FE int get.
Solution:

// FE int get: Get the value of *ef.
// If *ef is empty, block until it is full.
int FE int get(struct FE int *ef) {

int val;
pthread mutex lock(&(ef->lock));
while(!ef->full)

pthread cond wait(&(ef->cond), &(ef->lock));
val = ef->value;
ef->full = FALSE;
pthread cond signal(&(ef->cond));
pthread mutex unlock(&(ef->lock));
return(val);

}

Likewise, Peril-L doesn’t provide mutexes or condition variables. Show that you can implement a mutex using
Peril-L full/empty variables. Figure 1 shows an outline of the code that you should write. Note that I’m not
asking you to write the functions to allocate, initialize, or free your mutex structs.

(b) (5 points) Define a Peril-L struct FE mutex for a mutex type that is implemented using one or more
full/empty variables. In Peril-L, a variable whose name ends with an apostrophe is a full/empty variable,
for example, int v’;. Your struct can also use regular variables that are, presumably, global because
this struct is used for synchronization. Note that Peril-L uses C-syntax plus the Peril-L extensions. Any
reasonable approximation to Peril-L’s syntax will be accepted.

Solution:
struct FE mutex {

bool fe’;
bool is locked;

}

(c) (5 points) Write the function body for FE mutex lock. The textbook points out that it is a usage error
if a thread attempts to acquire a lock that it already has. POSIX-threads doesn’t check for this; so, you
don’t have to either.

Solution:
void FE mutex lock(struct FE mutex *m) {

m->fe’ = TRUE; // will block until the mutex is free.
m->is locked = TRUE; // see FE mutex unlock

}

(d) (5 points) Write the function body for FE mutex unlock. It is an error to attempt to unlock a mutex
that is not presently locked. Your code should call error("bad unlock"); in this situation.

Solution:
void FE mutex unlock(struct FE mutex *m) {

if(!m->is locked) error("bad unlock");
m->is locked = FALSE;
int toss = m->fe’; // empty fe to release the lock

}

4

struct FE mutex {
// You declare the fields.

};

// FE mutex lock(m): acquire mutex m.
void FE mutex lock(struct FE mutex *m) {

// You write the function body.
}

// FE mutex unlock(m): release mutex m.
void FE mutex unlock(struct FE mutex *m) {

// You write the function body.
}

Figure 1: Implementing a mutex using full/empty variables.

struct FE int {
int value;
boolean full;
pthread mutex t lock;
pthread cond t cond;

};

// FE int set: Set the value of *ef to val.
// If *ef is full, block until it is empty.
void FE int set(struct FE int *ef; int val) {

pthread mutex lock(&(ef->lock));
while(ef->full)

pthread cond wait(&(ef->cond), &(ef->lock));
ef->value = val;
ef->full = TRUE;
pthread cond signal(&(ef->cond));
pthread mutex unlock(&(ef->lock));

}

// FE int get: Get the value of *ef to val.
// If *ef is empty, block until it is full.
int FE int get(struct FE int *ef) {

// You get to write get!
}

Figure 2: Implementing full/empty variables using POSIX threads

5

E

c=1 c=2 c=3 c=4 c=5 c=6

r=1

r=2

r=3

r=4

r=5

r=6

r=7

r=8

c=7 c=8

S

Figure 3: Critical path for parallel editing distance computation

5. (27 points) Consider the parallel implementation of dynamic programming for computing editing distance from
the November 1 lecture. . . .

In lecture, we modeled the time for this computation assuming that a processor takes time tup to update one cell
of the tableau, and that the total for the sender and receiver to send and receive a message of m tableau elements
is t0 + t1m. With this model, the time for the sequential computation is tseq = tupN

2 and the time for the
parallel computation is

tpar = (2P − 1)

(
N

P

)2

tup + 2(P − 1)

(
t0 +

N

P
t1

)
(a) (5 points) Assume that tup = 20ns, t0 = 200ns and t1 = 10ns (reasonable values on a shared-memory

implementation using POSIX threads or Java threads. Note: 1ns = 10−9 seconds). What is the speed-up if
N = 1000 and P = 16?

Solution:

tseq = N2tup
= 1000220ns, N = 1000, tup = 20ns
= 20ms

tpar = (2P − 1)

(
N

P

)2

tup + 2(P − 1)(t0 +
N

P
)t1

= (2 ∗ 16− 1)
(
1000
16

)2
20ns + 2 ∗ (16− 1) ∗ (200ns + 1000

16)10ns, P = 16, t0 = 200ns, t1 = 10ns
= 2.45ns

SpeedUp =
tseq
tpar

= 8.17

Note: There was a right-parenthesis in the wrong place in the equation for tpar in the original
version of the problem. If you used that formula, you would get (something whose units don’t
make sense, but for I’ll ignore than to obtain)

6

• If 200ns is taken as (dimensionless) 200 · 10−9, then tpar = 2.44ms, and SpeedUp = 8.19.
• If 200ns is taken as (dimensionless) 200, then then tpar = 2.5ms, and SpeedUp = 7.998.

7

(b) (5 points) Show that in the limit that N →∞, the speed-up goes to P/2.

Solution:

limN→∞ SpeedUp = limN→∞
tseq(N)
tpar (N)

= limN→∞
N2tup

(2P−1)(N/P)2tup+2(P−1)(t0+(N/P)t1)

= limN→∞
(
(2P − 1)/P 2 + 2(P − 1)(t0/N + t1/P)/N

)−1
=

P

2− 1
P

For moderate to large values of P , this is roughly P/2. I’ll accept either answer.

We can divide the tableau into smaller blocks. For any integer M > 1, let each block have size (N/(MP)) ×
(N/(MP)). Now, the entire tableau consists of MP rows of MP columns of these blocks. Assume that N is
divisible by MP . The revised algorithm (for processor k) is:

for(int m = 0; m < M; m++) {
c = m*(N/P) + k;
top row[Jc] = initial values;
for(int r = 0; r < P; r++) {

if(c > 1)
receive values for T (Ir, (c− 1) ∗ (N/P)) from process c-1;

update B(r, c);
if(c < N)

send values for T (Ir, c ∗ (N/P)) to process c+1;
}

}

(c) (4 points) Draw the critical path for this computation when P = 8 and M = 2. You may use the template
from Figure 4 when drawing your answer.

Solution: See Figure A.Q5-c. There are many possible critical paths. This one shows a path
where process 2 is busy for most of the path. All blocks that are traversed by solid-line portions of
the blue line are on the path; other blocks, including those under dashed portions of the blue line
are not on the critical path. On this path, process 1 computes B(1, 1), then process 2 computes
all of its blocks except for thelast one, B(16, 14). Processes 3 and 4 then compute B(15, 15),
B(15, 16), and B(16, 16).
This path has the properties that as many blocks as possible have 2 ≤ j < MP – these blocks
require both a send and a receive during their computation, thus the communication time is max-
imized. Furthermore, by including most of the computations for process 2 in the path, the com-
putation time is not affected by whether or not process 2 time-shares when it has multiple blocks
that can be updated. The same total comptuation time is needed either way.
There are many other ways to choose a critical path that has the properties described above. Any
correct answer will get full credit.

(d) (5 points) Derive a formula for the parallel execution time as a function of N , P , M , t0, t1, and tup .

Solution: The critical path includes the updates ofM2P+(P−1) blocks. Each block consists of
N

MP ×
N

MP cells that must be updated. Thus, the computation time to update a block is N2

M2P 2 tup ,
and the computation time on the critical path is:

tcompute = (M2P + (P − 1)) N2

M2P 2 tup
=

(
1 + 1

M2P

(
1− 1

P

))
N2

P tup

8

All of these block updates involve one receive operation and one send except for the update
of B(1, 1) which only involves a send, and the update of B(MP,MP) which only involves a
receive. Thus there are M2P + (P − 2) receives and M2P + (P − 2) sends on the path. Each
message communicates N/(MP) values. This yields a communication time of

tmsg = (M2P + (P − 2))
(
t0 +

N
MP t1

)
= NMt1 +

N
M

(
1− 2

P

)
t1 + (M2P + P − 2)t0

The total time for the parallel computation is the sum of the time for computation plus the time
for communication:

tpar = tcompute + tmsg

= N2

P tup + N2

M2P

(
1− 1

P

)
tup +NMt1 +

N
M

(
1− 2

P

)
t1 + (M2P + P − 2)t0

(e) (4 points) What is the speed-up with M = 8 and the same parameters as for part a?

Solution: Each block is N
MP ×

N
MP = 7.8125 × 7.8125 elements. You might ask how we can

have a fractional number of elements in a block? That’s a reasonable question; I’m just taking it
as a reasonable approximation for the next part when we consider large values of N , M , and P .
Of course, I’ll give full credit to any solution that handles this is a reasonable way. The time for
a block update is

tblk = N2

M2P 2 tup
= 10002

82162 20ns
= 1.22µs

There are M2P + (P − 1) = 1039 blocks on the critical path; so the total compute time is
1039 ∗ 1.2207µs = 1.2683ms. I’ll also use my formula for tcompute above and get

tcompute =
(
1 + 1

M2∗P
(
1− 1

P

))
N2

P tup
=

(
1 + 1

82∗16
(
1− 1

16

))
10002

16 20ns
= 1.2683ns

The two calculations agree – I’m happy.
There are 1038 sends and receives of 7.8125 values. Each send+receive takes time

t0 + 7.8125t1 = 200ns + 7.8125 ∗ 10ns = 278.125ns

The total time for sends and receives is 1038 ∗ 278.125ns = 288.7µs. I’ll also use my formula
for tmsg above and get

tmsg = NMt1 +
N
M

(
1− 2

P

)
t1 + (M2P + P − 2)t0N ∗M ∗ t1 + (N/M)(1− 2/P) ∗ t1 + (M2 ∗ P + P − 2) ∗ t0

= 1000 ∗ 8 ∗ 10ns + 1000
8

(
1− 2

16

)
10ns + (82 ∗ 16 + 16− 2) ∗ 200ns

= 288.7µs

Again, the two calculations agree, and I’m happy.
The total time is

tpar = tcompute + tmsg

= 1.557ms

I’ll also use my formula for tmsg above and get

tpar ′ = tcompute + tmsg

= N2

P tup + N2

M2P

(
1− 1

P

)
tup +NMt1 +

N
M

(
1− 2

P

)
t1 + (M2P + P − 2)t0

= ((10002)/16) ∗ 20ns + 10002

82∗16 (1− (1/16)) ∗ 20ns + 1000 ∗ 8 ∗ 10ns + (1000/8)(1− (2/16))10ns + (82 ∗ 16 + 16− 2)200ns
= 1.557ms

9

Good, that works out too.
Finally,

SpeedUp′ =
tseq
tpar ′

=
20ms

1.557ms
= 12.85

(f) (4 points) Show that in the limit as N →∞, M can be chosen so that the speed-up will converge to P .

Solution: From part (c) we have:

tpar = N2

P tup + N2

M2P

(
1− 1

P

)
tup +NMt1 +

N
M

(
1− 2

P

)
t1 + (M2P + P − 2)t0

and the problem statement gave us that tseq = N2tup . We want limN→∞
tseq
tpar

= P . Equivalently,
we want to choose M so that

limN→∞
N2

M2P

(
1− 1

P

)
tup +NMt1 +

N
M

(
1− 2

P

)
t1 + (M2P + P − 2)t0 = o((N2/P)tup)

⇔ limN→∞
1

M2 + MP
N + P

NM + M2P 2

N2 = o(1)

If P = o(N) then let M =
√

N
P , and the conclusion follows. If P is not o(N), then we have

an example of excessive parallelism which may be fun for algorithms on a PRAM, but it not the
topic of this course.

6. Sorting on a Mesh (28 points).
Let a be an array with of N values, [a0, a2, . . . , aN − 1]. Every operation that I describe in this problem can be
implemented using sorting networks. Thus, we can assume that every element of a has a value of 0 or 1.

If N = N1N2, then we can arrange the elements of a in a two dimensional array, A, where

Ai,j = aN2∗i+j , if i is even
Ai,j = aN2∗(i+1)−(j+1), if i is odd

This scheme arranges a into a “snaking” in A with even indexed rows going left-to-right, and odd-indexed rows
going right-to-left.

For simplicity, assume that N1 is a power of 2 greater than 1. We will say that a row of A is “clean” if all of its
elements have the same value, and “dirty” if the row contains at least one 0 and at least one 1.

In the first step of our sorting algorithm, we will sort all even-indexed rows to be ascending to the right, and all
odd-indexed rows to be ascending to the left, i.e.:

∀0 < j < N2. A(i, j − 1) ≤ A(i, j), if i is even
∀0 < j < N2. A(i, j − 1) ≥ A(i, j), if i is odd

(a) (5 points) Show that initially, the number of clean rows of A can be any value from 0 to N1 (inclusive).

Solution: Assume N2 ≥ 2. Let 0 ≤ d ≤ N1 be the desired number of dirty rows. Let a be the
sequence with:

ai = 1, if i mod N2 = 0 and i/N2 < d
= 0, otherwise

The first d rows of A have one 1, and N2 − 1 0’s, and the remaining rows are all zero. Thus, A
has d dirty rows.

10

E

c=1 c=5 c=9 c=16c=13

r=1

r=5

r=9

r=13

r=16

S

Figure 4: Critical path template for revised parallel editing distance computation

S

c=1 c=5 c=9 c=16c=13

r=1

r=5

r=9

r=13

r=16 E

Figure A.Q5-c: Path for revised parallel editing distance computation

11

(b) (5 points) For every even numbered i with 0 ≤ i < N1, do a compare-and-swap of A(i, j) and A(i+1, j)
for all 0 ≤ j < N2. Show that after the compare-and-swap, at least one of row i or row i + 1 must be
clean.
Hint: consider what happens if the total number of zeros in rows i and i+1 is greater than the total number
of ones. What if the number of ones is greater than the number of zeros?

Solution: If the total number of zeros in rows i and i+1 is greater than or equal to number of 1’s
then the total number of zeros is greater than or equal to N2. Because i is even, row i is sorted
ascending to the right. Let

j0 = minj s.t.A(i, j) = 1, if ∃j ∈ {0, . . . N2 − 1}s.t.A(i, j) = 1
j1 = minj s.t.A(i+ 1, j) = 0, if ∃j ∈ {0, . . . N2 − 1}s.t.A(i+ 1, j) = 0

The total number of zeros in row i is j0, and the total number of zeros in row i + 1 is N2 − j1.
Thus,

j0 +N2 − j1 > N2, total number of zeros > N2

j0 > j1 N2

This means that for all 0 ≤ j < N2, at least one of A(i, j) or A(i+ 1, j) must be zero. After the
compare and swap operation, all elements of A(i, j) must be 0, and row i is clean.
If the total number of zeros in rows i and i + 1 is less than the number of ones, then a similar
argument shows that after the compare-and-swap, all elements of A(i+ 1, j) must be 1, and row
i+ 1 is clean.
With either case, at least one of row i or row i+ 1 must be clean.

(c) (5 points) Instead of doing the compare-and-swap from part b, sort each column into ascending order, i.e.:

∀0 < i < N1. A(i− 1, j) ≤ A(i, j)

Show that after all of the columns are sorted in this way, A has at least N1/2 clean rows.

Solution: After sorting the columns, each column consists of a sequence of zeros followed by
a sequence of ones. The height of the sequence of zeros is equal to the number of zeros in the
unsorted column. Performing a compare-and-swap as in part (b) does not change the number of
zeros in each column; thus, we could perform this compare and swap on each pair of rows before
the column sort and not change the outcome of the sort. This produces at least N1/2 clean rows.
For every row that is all 0’s before the column sort, there must be a row that is all 0’s after the
column sort (these rows “sink” to the bottom). Likewise, row’s of 1’s float to the top.
Combining these two observations, A must have at least N1/2 clean rows after the column sort.

(d) (8 points) Show that if the following algorithm is executed:

for k = 1 to 1 + log2N1 do
forall i in (0..(N1-1)) do

if(i is even) sort row i of A ascending to the right;
else sort row i of A descending to the right;

end
forall j in (0..(N2-1)) do

sort column j of A into ascending order;
end

array A has at most one dirty row.

Solution: As shown above, after the first iteration of the for k loop, A must have at least N1/2
clean rows. The rows of zeros at the bottom of the array will be unaffected by further row or
column sorts. Likewise for the rows of ones at the top. After the first iteration, A will have at

12

most N1 − N1/2 = N1/2 dirty rows, and these rows are the only ones modified by subsequent
iterations of the for k loop.
In the same manner, each successive iteration of the for k loop will reduce the number of dirty
rows by a factor of two. More precisely, at the end of iteration k, A will have at most dN1/2

−ke
dirty rows. At the end of the log2N1 iterations, A will have at most one dirty row. The final
iteration sorts this row (and the column sort will do nothing).

(e) (5 points) Show that at the end of step d, A is sorted into ascending “snake” order (i.e. a is sorted into
ascending order when mapped to A as described above).

Solution: Let 0 ≤ i1, i2 ≤ N1 and 0 ≤ j1, j2 < N1. Let

m1 = N2 ∗ i1 + j1, if i1 is even
= N2 ∗ (i1 + 1)− (j1 + 1), if i1 is odd

m2 = N2 ∗ i2 + j2, if i2 is even
= N2 ∗ (i2 + 1)− (j2 + 1), if i2 is odd

I’ll show that if m1 ≤ m2, then A(i1, j1) ≤ A(i2, j2). First, I’ll show that if i1 > i2, then
m1 > m2. If i1 is even, then either i2 is odd or i1 − i2 ≥ 2, thus

m1 −m2 ≥ N2 ∗ i1 + j1 −max(N2 ∗ (i1 − 2) + j2, N2 ∗ ((i1 − 1) + 1)− (j2 + 1))
≥ N2 ∗ i1 + j1 −N2 ∗ i1 −max(j2 − 2 ∗N2,−(j2 + 1))
≥ j1 −max(−N2 − 1,−j2 − 1)
≥ j1 + 1
≥ 1

Thus, if i1 is even and i1 > i2, then m1 > m2. A similar argument shows that if i1 is odd and
i1 > i2, then m1 > m2. Thus, if i1 > i2, then m1 > m1.
Now, assume m1 ≤ m2, then i1 ≤ i2 as just shown. If i1 < i2, then at least one of row i1 or
i2 must be clean, and it follows that A(i1, j1) ≤ A(i2, j2). If i1 = i2, then if i1 is even then
j1 ≤ j2, and if i1 is odd then then j1 ≥ j2. Consider the case when i1 is even. Row i1 is sorted in
the final step into ascending order. Because j1 ≤ j2, A(i1, j1) ≤ A(i2, j2). Otherwise, i2 is odd;
j1 ≥ j2, row i1 is sorted into descending order; and A(i1, j1) ≤ A(i2, j2). Thus, if m1 ≤ m2,
A(i1, j1) ≤ A(i2, j2), and a(m1) ≤ a(m2). The two-dimensional array A has been sorted into
“snake order,” and the one-dimensional array a has been sorted into ascending order.
Note: This algorithm is known as “Shear Sort” see
• I.D. Scherson, S. Sen: “Parallel sorting in two-dimensional VLSI models of computation.”

IEEE Transactions on Computers vol. C-38, no. 2, pp. 238-249 (1989)
• http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/twodim/shear/shearsorten.htm

13

c=7c=0 c=1 c=2 c=3 c=4 c=5

r=0

r=1

r=2

r=3

r=4

r=5

r=6

r=7

a0 a1 a2 a3 a4 a5
a6 a7

a15 a14 a13 a12 a11 a10
a9 a8

a16

a63

c=6

Figure 5: Snake-ordering of the elements of an array

14

