POSIX Threads

Mark Greenstreet, CpSc 448B, 2011/12, Term 2

24 November 2011 — p.1/32

Lecture Outline

POSIX Threads

® Count3’s
® Creating threads

@® Joining threads

® Communication between Threads
® Shared Memory
® Locks

® Signals

® Correctness of shared memory programs
® Bad stuff: Races, deadlock, livelock

® Good stuff: Invariants

24 November 2011 — p.2/32

POSIX Threads

® POSIX threads: a library for writing parallel programs in C for
shared-memory, multiprocessors (under Unix).

® Provides functions for thread creation and termination.

® Provides functions for locking (mutual exclusion).

® Provides functions for signaling between threads.

24 November 2011 — p.3/32

Count 3’s: Design

Given A an array of n integers.
Let ¢ be the intended number of worker threads.

Create t threads
® Each thread counts the number of 3’s in a sub-array of roughly n/t elements.

® Each thread writes its count into a separate element of a results array and then
terminates.

The main thread waits for each worker thread to terminate and adds up their values

to get the total number of 3’s in A.

24 November 2011 — p.4/32

Creating a POSIX thread

pthread_create(threadld, threadAttr, thread_fn, thread_arg)

@ threadld: a pointer to a pthread_t, a thread identifier;
threadAttr: attributes for the thread — set it to NULL to get the defaults;
threadFn: call this function to start execution of the thread;

threadArg: the parameter to pass to threadFn.

Corresponds to Erlang spawn(Fun, ArgList):

® pthread thread create corresponds to spawn.
thread_fn corresponds to Fun.
thread_arg corresponds to ArgList.

threadld corresponds to the return value of spawn.
® Why?
® Because thisis C:

no explicit exceptions

return value used to report errors

24 November 2011 — p.5/32

A thread for counting 3’s

typedef struct {
Int *a, lo, hi; /* count 3's for aflo..(hi-1)] */
Int *count; /* put the local count here */
} c3s_arg;

/* ¢3s_thread: count the number of threes in aflo..(hi-1)] */
void *c3s_thread(void *void_arg) {
c3s_arg *arg = (c3s_arg *)(void_arg);

int *a = arg- >a; /* copy arg’s fields to local variables */
Int lo = arg- >lo;
Int hi = arg- >hi;
int count = 0;
for(inti=1lo; i < hi; i++) /* count */
count += ali] == 3;
(arg- >count) = count; / save our result */
return(NULL); /[* that's it */

24 November 2011 — p.6/32

Creating Threads: Example

/* allocate arrays for thread IDs and per-thread counts */
pthread_t *threadld = (pthread_t *)(malloc(t*sizeof(pthread _t)));
int *counts = (int *)(malloc(t*sizeof(int)));

int oldHi = O;

/* start threads: give each n/t values of a to work on */
for(inti=0;i <t; i++) {
c3s_arg *arg = (c3s_arg *)(malloc(sizeof(c3s_arg)));
arg- >a = a; arg- >lo = oldHi;
arg- >hi = (((long long int)(n))*(i+21))/t;
arg- >count = &(countsfi]);
if(pthread_create(&threadld[i], NULL, c3s_thread, arg) '= 0) {
perror("count 3's: ");
exit(-1);
}
oldHi = arg- >hi;

24 November 2011 — p.7/32

Reaping Threads

® pthread join(threadld, void **status)

® threadld: a pointer to a pthread t.
Thread join waits until the thread corresponding to threadld exits.

® status: The exiting thread can pass a pointer back to it's parent with this. If
status == NULL, then the exit value is ignored.

® pthread_exit(void *status)
@® or, the thread’s top-level function can return —
What's *status then?

24 November 2011 — p.8/32

Reaping Threads: Example

[* wait for all threads to finish */
for(if(ptkr@ad JdintthidadId[i], NULL) !'= 0) {
perror(“count 3's: ");
exit(-2);
}

n3s += countsi];

}

return(n3s);

24 November 2011 — p.9/32

Count 3’s: runtime

Count 3's execution times

Time
-

e ~——
o\“ : s s —r——— —
Lo # threads »
CPU # cores min. time

SUN Niagra T2 8 cores
Intel Core 2 Duo 2 cores
Intel Xeon 8 cores

0.0601 (64 threads)
0.2195s (47 threads)
0.0315s (23 threads)

24 November 2011 — p.10/32

Communication and Synchronization

® Example: Dekker’s algorithm
® Shared Memory
® Mutexes

® Condition Variables

® Barriers

24 November 2011 — p.11/32

Dekker’s Algorithm

Problem statement: ensure that at most one thread Is Iin
Its critical section at any given time.

thread O: thread 1:
flag[0] = true; flag[1l] = true;
while(flag[1]) { whil e(flag[0]) {
if(turn !'=0) { if(turn = 1) {
flag[0] = fal se; flag[1l] = false;
while(turn !'= 0); while(turn !'= 1);
flag[0] = true; flag[1l] = true;
} }
} }
critical section critical section
turn = 1; turn = 0O;
flag[0] = fal se; flag[1l] = fal se;

24 November 2011 — p.12/32

Dekker’s with C-threads

t ypedef struct { /x thread parameters */
int id, ntrials;
} dekker _args;

| * shared variables */
int flag[] = 0, 0;
int count[] = 0O, 0;
int turn = O;

i nt dekker thread(void *voidarg) {

for(int i =0; i <ntrials; i++) {
do sone worKk;
acquire the | ock;
critical section (includes test for inteference);
rel ease | ock;

24 November 2011 — p.13/32

Work, then lock

[* do a random amount of “work” before critical region */
r = 23*xr & Ox3f; /= simple pseudo-random, range = {0...63} */
for(int j =0; J <r; J++); [* thisis“work’? =*/

[* acquire the lock */
flag[me] = TRUE; /* indicate intention to enter critical region */
while(flag[!'nme]) {
if(turn !'= nme) {
flag[me] = FALSE] * give the other thread a chance */
whil e(turn !'= nme) s spinwaiting for turn */
flag[me] = TRUE;/+* tryagain */

24 November 2011 — p.14/32

Critical section, then unlock

| * critical section */

for(int j =0; j < 10; j++) {
count[nme] = j;
/| * check_zer o reports error and diesifcount[! ne] !'= 0 =/
check_zero(count, !'nme, i);

}

count[nme] = O;

[* release the lock */
turn = ! ne;
flag[me] = O;

24 November 2011 — p.15/32

Let's try It

% gcc -std=c99 dekker0O0.c cz.o -0 dO

% dO

check_zero failed for trial 8 a[0] =1
% dO

check_zero failed for trial 986: a[l] =4
% dO

check_zero failed for trial 898: a[l] =4
% dO

check_zero failed for trial 10: a[0] =1
% . ..

® What happened?
® Why?

24 November 2011 — p.16/32

Fixing the bug

[* acquire the lock */
flag[me] = TRUE; /* indicate intention to enter critical region */
asm("nfence");
while(flag[!me]) {
if(turn !'=nme) {
flag[me] = FALSE] * give the other thread a chance */
while(turn !'= nmej)# spinwaiting for turn */
flag[me] = TRUE; /* tryagain */
asm("nfence");

}

@® Try again:

% d1
ok
% d1
ok
% d1

ok 24 November 2011 — p.17/32
0/

What's mfence?

® A memory fence.

® Simple version:

® Allloads and stores issued by the processor that executes the nf ence must
complete globally before execution continues beyond the nf ence.

® nf ence instructions are expensive

® And in-line assembly code is painful
® Not portable.
® Hard to read.

® Who wants to program in assembly?

24 November 2011 — p.18/32

Pthreads provides a higher-level API

Threads communicate using shared memory.

Mutual exclusion objects, condition variables, and barriers provide synchronization
between threads.

Pthreads functions also perform the necessary memory fences to make sure that
the data is consistent between threads.

® For changes by thread 1 to be guaranteed to be visible to thread 2: both

threads must perform a pthreads synchronization action between the writes by
thread 1 and the reads by thread 2.

In other words:

@ All pthreads synchronization operations are ordered according to their logical
dependencies:

@® Within a thread, the thread’s actions and its pthreads calls are ordered as
expected.
® Example:

@ |If thread 1 unlocks a mutex that then allows thread 2 to continue execution,
® Then all operations performed by thread 1 before the unlock are visible to
operations performed by thread 2 after it acquires the lock.

24 November 2011 — p.19/32

Producer-Consumer

@® Problem statement:

® The producer generates a sequence of data values: vy, va,
® The consumer reads this sequence from the producer.

@ |If the consumer is ready to read a value and none is available from the
producer, then the consumer stalls until the a data value is available.

® Likewise, we can implement this interface with a fixed-capacity buffer.
® In this case, if the producer generates a value and there is no empty space

available in the buffer, the producer stalls until the value can be written to the
buffer.

@ \We’'ll look at an implementation using a shared, fixed-sized array as a buffer.

24 November 2011 — p.20/32

Producer-Consumer: try 1

Val ue buffer[n]; /* sharedbuffer */
int wptr, rptr; /+* indices for current write and read positions */

int next(int i) { /* cyclic successorofi */
return((i+1) %n);
}

voi d put(Value v) { /* called by producer */
i f(next(wptr) !'=rptr) {
buffer[wdtr] = v;
wptr = next (wptr);
} el se ?2??

}

Val ue take() { /* -called by consumer */
if(rptr !'= wptr) {
Value v = buffer[rptr];
rptr = next(rptr);
return(v);
} el se 72?7

24 November 2011 — p.21/32

Producer-Consumer: try 2

voi d put(Value v) { /* called by producer */
whi | e(next (wptr) == rptr); /[=* waitforempty space */
buffer[wdtr] = v;
wptr = next (wptr);

}

Val ue take() { /* calledbyconsumer */
while(rptr == wptr); /* waitfordatato arrive */
Value v = buffer[rptr];
rptr = next(rptr);
return(v);

}

What's wrong with this solution?

24 November 2011 — p.22/32

Condition Variables (try cond-1)

@® wait (cond); this thread waits until a signal is sent to cond.

@ signal (cond): this thread sends a signal to cond.

24 November 2011 — p.23/32

Producer-Consumer: try 3

Cond w.cond, r_cond; /* conditionvariables */

voi d put(Value v) { /* called by producer */
i nt oldwptr = wptr;
| f(next(wptr) == rptr)
wai t (w.cond) ;
buffer[wdtr] = v;
wptr = next (wptr);
i f(oldwptr == rptr)
signal (r _cond);

Val ue take() { /* called by consumer */
int oldrptr = rptr;
I f(rptr == wptr)
wai t (r _cond) ;
Value v = buffer[rptr];
rptr = next(rptr);
| f(next(wptr) == oldrptr)
si gnal (w_.cond) ;
return(v);

}

, : : .
What's wrong with this solution” 24 November 2011 — p.24/32

Mutex Variables

@ | ock(nutex); this thread acquires a lock on nut ex.
® Only one thread can have the lock at a time.

® |If athread 6; attempts to lock a mutex that thread 6; has already locked, then
thread 6; will block.

@ unl ock(nmut ex); this thread releases its lock on mutex.

® If one or more threads are blocked trying to lock the mutex, then one of them
will acquire the lock.

® If multiple threads are waiting for the mutex, an arbitrary one gets it.

There is no promise or intent of first-come-first-served awarding of the mutex to
waiting threads.

24 November 2011 — p.25/32

Producer-Consumer: try 4

Mut ex m /* amutex variable */

voi d put(Value v) { /* called by producer */
Int ol dwptr = wptr;
| ock(m;
I f(next(wptr) == rptr)
wai t (w.cond) ;
buffer[wptr] = v;
wptr = next (wptr);
I f(oldwptr == rptr)
signal (r _cond);
unl ock(m;

Val ue take() { /* called by consumer */

int oldrptr = rptr;

| ock(m;

I f(rptr == wptr)
wai t (r_cond);

Value v = buffer[rptr];

rptr = next(rptr);

I f(next(wptr) == oldrptr)
si gnal (w.cond) ;

unl ock(m;

return(v);

}

What's wrong with this solution?

24 November 2011 — p.26/32

Condition variables and mutexes

@® \We need a mutex with each condition variable

® Otherwise, we can’t safely check the wait condition.
@ If the thread needs to wait, then the mutex needs to but unlocked after the thread is
waiting for the signal.
@® But, if the thread is waiting for a signal, then it's blocked,
® ...anditcan’'t do anything.
® In particular, it can’t unlock the mutex.

@® Solution: the wai t function handles the mutex lock:
® When the thread is suspended, wai t unlocks the mutex.
® When the thread is resumed, wai t relocks the mutex.

24 November 2011 — p.27/32

Producer-Consumer: final solution

voi d put(Value v) { /* called by producer */

Val

}

Int ol dwptr = wptr;

| ock(m;

i f(next(wptr) == rptr)
wai t (w.cond, | ock);

buffer[wptr] = v;

wptr = next(wptr);

I f(oldwptr == rptr)
signal (r _cond);

unl ock(m ;

ue take() { /=* -called by consumer */
int oldrptr = rptr;
| ock(m;
If(rptr == wptr)
wait (r_cond, | ock);
Value v = buffer[rptr];
rptr = next(rptr);
I f(next(wptr) == oldrptr)
si gnal (w.cond);
unl ock(m;
return(v);

We could unlock the mutex while updating buf f er , r pt r, and wpt r . Should we?

24 November 2011 — p.28/32

Mutexes

The mutex type: pt hr ead_nut ex_t

@ declare and initialize a mutex:
pt hread nutex _t ny_nutex;
pt hread nutex init(&ry_nutex, NULL);
@® using a mutex:
® pthread nmutex | ock(&y nut ex);
® pt hread rmut ex_unl ock(&ry_nut ex) ;
® pthread mutex_ tryl ock(&y rmnut ex);
@® pthread nut ex _destroy(&y nut ex);

@® usage:

@® Typically, a mutex is associated with a shared data structure.
® A thread acquires the mutex before accessing the data structure.

24 November 2011 — p.29/32

Condition Variables

The condition variable type: pthread_cond_t

@® declare and initialize a condition variable:
pt hread cond _t ny_cond;
pt hread cond_init(&ry _cond, NULL);
@ using a condition:
® pthread cond wait (& _cond);
® pthread cond _signal (&my_cond);
® pthread cond _broadcast (&y_cond);
® pthread cond destroy(&nmy cond);

@ condition variables and locks:

24 November 2011 — p.30/32

Barriers

24 November 2011 — p.31/32

For more information

@ Lin & Snyder, chapter 6.

@ https://computing.linl.gov/tutorials/pthreads

24 November 2011 — p.32/32

	Lecture Outline
	POSIX Threads
	Count 3's: Design
	Creating a POSIX thread
	A thread for counting 3's
	Creating Threads: Example
	Reaping Threads
	Reaping Threads: Example
	Count 3's: runtime
	Communication and Synchronization
	Dekker's Algorithm
	Dekker's with C-threads
	Work, then lock
	Critical section, then unlock
	Let's try it
	Fixing the bug
	What's mfence?
	Pthreads provides a higher-level API
	Producer-Consumer
	Producer-Consumer: try 1
	Producer-Consumer: try 2
	Condition Variables (try cond-1)
	Producer-Consumer: try 3
	Mutex Variables
	Producer-Consumer: try 4
	Condition variables and mutexes
	Producer-Consumer: final solution
	Mutexes
	Condition Variables
	Barriers
	For more information

