
POSIX Threads
Mark Greenstreet, CpSc 448B, 2011/12, Term 2

24 November 2011 – p.1/32

Lecture Outline
POSIX Threads

v Count 3’s
u Creating threads

u Joining threads

v Communication between Threads
u Shared Memory
u Locks

u Signals

v Correctness of shared memory programs
u Bad stuff: Races, deadlock, livelock

u Good stuff: Invariants

24 November 2011 – p.2/32

POSIX Threads
v POSIX threads: a library for writing parallel programs in C for

shared-memory, multiprocessors (under Unix).

v Provides functions for thread creation and termination.

v Provides functions for locking (mutual exclusion).

v Provides functions for signaling between threads.

24 November 2011 – p.3/32

Count 3’s: Design
v Given A an array of n integers.

v Let t be the intended number of worker threads.

v Create t threads
u Each thread counts the number of 3’s in a sub-array of roughly n/t elements.
u Each thread writes its count into a separate element of a results array and then

terminates.

v The main thread waits for each worker thread to terminate and adds up their values

to get the total number of 3’s in A.

24 November 2011 – p.4/32

Creating a POSIX thread
pthread_create(threadId, threadAttr, thread_fn, thread_arg)

v threadId: a pointer to a pthread_t, a thread identifier;

v threadAttr: attributes for the thread – set it to NULL to get the defaults;

v threadFn: call this function to start execution of the thread;

v threadArg: the parameter to pass to threadFn.

v Corresponds to Erlang spawn(Fun, ArgList):
u pthread_thread_create corresponds to spawn.
u thread_fn corresponds to Fun.
u thread_arg corresponds to ArgList.
u threadId corresponds to the return value of spawn.

t Why?
t Because this is C:

no explicit exceptions
return value used to report errors

24 November 2011 – p.5/32

A thread for counting 3’s
typedef struct {

int *a, lo, hi; /* count 3’s for a[lo..(hi-1)] */
int *count; /* put the local count here */

} c3s_arg;

/* c3s_thread: count the number of threes in a[lo..(hi-1)] */
void *c3s_thread(void *void_arg) {

c3s_arg *arg = (c3s_arg *)(void_arg);
int *a = arg->a; /* copy arg’s fields to local variables */
int lo = arg->lo;
int hi = arg->hi;
int count = 0;
for(int i = lo; i < hi; i++) /* count */

count += a[i] == 3;
(arg->count) = count; / save our result */
return(NULL); /* that’s it */

}
24 November 2011 – p.6/32

Creating Threads: Example
/* allocate arrays for thread IDs and per-thread counts */
pthread_t *threadId = (pthread_t *)(malloc(t*sizeof(pthread_t)));
int *counts = (int *)(malloc(t*sizeof(int)));
int oldHi = 0;

/* start threads: give each n/t values of a to work on */
for(int i = 0; i < t; i++) {

c3s_arg *arg = (c3s_arg *)(malloc(sizeof(c3s_arg)));
arg->a = a; arg->lo = oldHi;
arg->hi = (((long long int)(n))*(i+1))/t;
arg->count = &(counts[i]);
if(pthread_create(&threadId[i], NULL, c3s_thread, arg) != 0) {

perror("count 3’s: ");
exit(-1);

}
oldHi = arg->hi;

}

24 November 2011 – p.7/32

Reaping Threads
v pthread_join(threadId, void **status)

u threadId: a pointer to a pthread_t.
Thread join waits until the thread corresponding to threadId exits.

u status: The exiting thread can pass a pointer back to it’s parent with this. If

status == NULL, then the exit value is ignored.

v pthread_exit(void *status)
u or, the thread’s top-level function can return –

What’s *status then?

24 November 2011 – p.8/32

Reaping Threads: Example
/* wait for all threads to finish */
for(int i = 0; i < t; i++) {if(pthread_join(threadId[i], NULL) != 0) {

perror("count 3’s: ");
exit(-2);

}
n3s += counts[i];

}
return(n3s);

24 November 2011 – p.9/32

Count 3’s: runtime

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

threads

T
im

e

Count 3’s execution times

Niagra T2
Core 2 Duo
Dual Quad−Core Xeon

CPU # cores min. time
SUN Niagra T2 8 cores 0.0601 (64 threads)
Intel Core 2 Duo 2 cores 0.2195s (47 threads)
Intel Xeon 8 cores 0.0315s (23 threads)

24 November 2011 – p.10/32

Communication and Synchronization
v Example: Dekker’s algorithm

v Shared Memory

v Mutexes

v Condition Variables

v Barriers

24 November 2011 – p.11/32

Dekker’s Algorithm
Problem statement: ensure that at most one thread is in
its critical section at any given time.

thread 0: thread 1:
flag[0] = true;
while(flag[1]) {

if(turn != 0) {

flag[0] = false;
while(turn != 0);
flag[0] = true;

}

}
critical section
turn = 1;
flag[0] = false;

flag[1] = true;
while(flag[0]) {

if(turn != 1) {

flag[1] = false;
while(turn != 1);
flag[1] = true;

}

}
critical section
turn = 0;
flag[1] = false;

24 November 2011 – p.12/32

Dekker’s with C-threads
typedef struct { /* thread parameters */

int id, ntrials;
} dekker args;

/* shared variables */
int flag[] = 0,0;
int count[] = 0,0;
int turn = 0;

int dekker thread(void *void arg) {
...
for(int i = 0; i < ntrials; i++) {

do some work;
acquire the lock;
critical section (includes test for inteference);
release lock;

}

}

24 November 2011 – p.13/32

Work, then lock
/* do a random amount of “work” before critical region */
r = 23*r & 0x3f; /* simple pseudo-random, range = {0 . . . 63} */
for(int j = 0; j < r; j++); /* this is “work”? */

/* acquire the lock */
flag[me] = TRUE; /* indicate intention to enter critical region */
while(flag[!me]) {

if(turn != me) {
flag[me] = FALSE;/* give the other thread a chance */
while(turn != me);/* spin waiting for turn */
flag[me] = TRUE;/* try again */

}
}

24 November 2011 – p.14/32

Critical section, then unlock
/* critical section */
for(int j = 0; j < 10; j++) {

count[me] = j;
/* check zero reports error and dies if count[!me] != 0 */
check zero(count, !me, i);

}
count[me] = 0;

/* release the lock */
turn = !me;
flag[me] = 0;

24 November 2011 – p.15/32

Let’s try it
% gcc -std=c99 dekker0.c cz.o -o d0
% d0
check zero failed for trial 8: a[0] = 1
% d0
check zero failed for trial 986: a[1] = 4
% d0
check zero failed for trial 898: a[1] = 4
% d0
check zero failed for trial 10: a[0] = 1
% ...

v What happened?

v Why?

24 November 2011 – p.16/32

Fixing the bug
/* acquire the lock */
flag[me] = TRUE; /* indicate intention to enter critical region */
asm ("mfence");

while(flag[!me]) {
if(turn != me) {

flag[me] = FALSE;/* give the other thread a chance */
while(turn != me);/* spin waiting for turn */
flag[me] = TRUE;/* try again */

asm ("mfence");
}

}

v Try again:

% d1
ok
% d1
ok
% d1
ok
% ...

24 November 2011 – p.17/32

What’s mfence?
v A memory fence.

v Simple version:
u All loads and stores issued by the processor that executes the mfence must

complete globally before execution continues beyond the mfence.

v mfence instructions are expensive

v And in-line assembly code is painful
u Not portable.
u Hard to read.

u Who wants to program in assembly?

24 November 2011 – p.18/32

Pthreads provides a higher-level API
v Threads communicate using shared memory.

v Mutual exclusion objects, condition variables, and barriers provide synchronization
between threads.

v Pthreads functions also perform the necessary memory fences to make sure that
the data is consistent between threads.

u For changes by thread 1 to be guaranteed to be visible to thread 2: both
threads must perform a pthreads synchronization action between the writes by
thread 1 and the reads by thread 2.

v In other words:
u All pthreads synchronization operations are ordered according to their logical

dependencies:
u Within a thread, the thread’s actions and its pthreads calls are ordered as

expected.
u Example:

t If thread 1 unlocks a mutex that then allows thread 2 to continue execution,
t Then all operations performed by thread 1 before the unlock are visible to

operations performed by thread 2 after it acquires the lock.

24 November 2011 – p.19/32

Producer-Consumer
v Problem statement:

u The producer generates a sequence of data values: v1, v2,
u The consumer reads this sequence from the producer.
u If the consumer is ready to read a value and none is available from the

producer, then the consumer stalls until the a data value is available.
u Likewise, we can implement this interface with a fixed-capacity buffer.

t In this case, if the producer generates a value and there is no empty space
available in the buffer, the producer stalls until the value can be written to the
buffer.

v We’ll look at an implementation using a shared, fixed-sized array as a buffer.

24 November 2011 – p.20/32

Producer-Consumer: try 1
Value buffer[n]; /* shared buffer */
int wptr, rptr; /* indices for current write and read positions */

int next(int i) { /* cyclic successor of i */
return((i+1) % n);

}

void put(Value v) { /* called by producer */
if(next(wptr) != rptr) {

buffer[wptr] = v;
wptr = next(wptr);

} else ???
}

Value take() { /* called by consumer */
if(rptr != wptr) {

Value v = buffer[rptr];
rptr = next(rptr);
return(v);

} else ???
}

24 November 2011 – p.21/32

Producer-Consumer: try 2
void put(Value v) { /* called by producer */

while(next(wptr) == rptr); /* wait for empty space */
buffer[wptr] = v;
wptr = next(wptr);

}

Value take() { /* called by consumer */
while(rptr == wptr); /* wait for data to arrive */
Value v = buffer[rptr];
rptr = next(rptr);
return(v);

}

What’s wrong with this solution?

24 November 2011 – p.22/32

Condition Variables (try cond-1)
v wait(cond); this thread waits until a signal is sent to cond.

v signal(cond); this thread sends a signal to cond.

24 November 2011 – p.23/32

Producer-Consumer: try 3
Cond w cond, r cond; /* condition variables */

void put(Value v) { /* called by producer */
int oldwptr = wptr;
if(next(wptr) == rptr)

wait(w cond);
buffer[wptr] = v;
wptr = next(wptr);
if(oldwptr == rptr)

signal(r cond);
}

Value take() { /* called by consumer */
int oldrptr = rptr;
if(rptr == wptr)

wait(r cond);
Value v = buffer[rptr];
rptr = next(rptr);
if(next(wptr) == oldrptr)

signal(w cond);
return(v);

}

What’s wrong with this solution?
24 November 2011 – p.24/32

Mutex Variables
v lock(mutex); this thread acquires a lock on mutex.

u Only one thread can have the lock at a time.
u If a thread θi attempts to lock a mutex that thread θj has already locked, then

thread θi will block.

v unlock(mutex); this thread releases its lock on mutex.
u If one or more threads are blocked trying to lock the mutex, then one of them

will acquire the lock.
u If multiple threads are waiting for the mutex, an arbitrary one gets it.
u There is no promise or intent of first-come-first-served awarding of the mutex to

waiting threads.

24 November 2011 – p.25/32

Producer-Consumer: try 4
Mutex m; /* a mutex variable */

void put(Value v) { /* called by producer */
int oldwptr = wptr;
lock(m);
if(next(wptr) == rptr)

wait(w cond);
buffer[wptr] = v;
wptr = next(wptr);
if(oldwptr == rptr)

signal(r cond);
unlock(m);

}

Value take() { /* called by consumer */
int oldrptr = rptr;
lock(m);
if(rptr == wptr)

wait(r cond);
Value v = buffer[rptr];
rptr = next(rptr);
if(next(wptr) == oldrptr)

signal(w cond);
unlock(m);
return(v);

}

What’s wrong with this solution?
24 November 2011 – p.26/32

Condition variables and mutexes
v We need a mutex with each condition variable

u Otherwise, we can’t safely check the wait condition.

v If the thread needs to wait, then the mutex needs to but unlocked after the thread is
waiting for the signal.

u But, if the thread is waiting for a signal, then it’s blocked,
u . . . and it can’t do anything.
u In particular, it can’t unlock the mutex.

v Solution: the wait function handles the mutex lock:
u When the thread is suspended, wait unlocks the mutex.
u When the thread is resumed, wait relocks the mutex.

24 November 2011 – p.27/32

Producer-Consumer: final solution
void put(Value v) { /* called by producer */

int oldwptr = wptr;
lock(m);
if(next(wptr) == rptr)

wait(w cond, lock);
buffer[wptr] = v;
wptr = next(wptr);
if(oldwptr == rptr)

signal(r cond);
unlock(m);

}

Value take() { /* called by consumer */
int oldrptr = rptr;
lock(m);
if(rptr == wptr)

wait(r cond, lock);
Value v = buffer[rptr];
rptr = next(rptr);
if(next(wptr) == oldrptr)

signal(w cond);
unlock(m);
return(v);

}

We could unlock the mutex while updating buffer, rptr, and wptr. Should we?

24 November 2011 – p.28/32

Mutexes
The mutex type: pthread_mutex_t

v declare and initialize a mutex:
pthread_mutex_t my_mutex;

pthread_mutex_init(&my_mutex, NULL);

v using a mutex:
u pthread_mutex_lock(&my_mutex);
u pthread_mutex_unlock(&my_mutex);

u pthread_mutex_trylock(&my_mutex);
u pthread_mutex_destroy(&my_mutex);

v usage:

u Typically, a mutex is associated with a shared data structure.
u A thread acquires the mutex before accessing the data structure.

24 November 2011 – p.29/32

Condition Variables
The condition variable type: pthread_cond_t

v declare and initialize a condition variable:
pthread_cond_t my_cond;

pthread_cond_init(&my_cond, NULL);

v using a condition:
u pthread_cond_wait(&my_cond);
u pthread_cond_signal(&my_cond);

u pthread_cond_broadcast(&my_cond);
u pthread_cond_destroy(&my_cond);

v condition variables and locks:

24 November 2011 – p.30/32

Barriers

24 November 2011 – p.31/32

For more information
v Lin & Snyder, chapter 6.

v https://computing.llnl.gov/tutorials/pthreads

24 November 2011 – p.32/32

	Lecture Outline
	POSIX Threads
	Count 3's: Design
	Creating a POSIX thread
	A thread for counting 3's
	Creating Threads: Example
	Reaping Threads
	Reaping Threads: Example
	Count 3's: runtime
	Communication and Synchronization
	Dekker's Algorithm
	Dekker's with C-threads
	Work, then lock
	Critical section, then unlock
	Let's try it
	Fixing the bug
	What's mfence?
	Pthreads provides a higher-level API
	Producer-Consumer
	Producer-Consumer: try 1
	Producer-Consumer: try 2
	Condition Variables (try cond-1)
	Producer-Consumer: try 3
	Mutex Variables
	Producer-Consumer: try 4
	Condition variables and mutexes
	Producer-Consumer: final solution
	Mutexes
	Condition Variables
	Barriers
	For more information

