Bitonic Sorting

Mark Greenstreet, CpSc 448B, Term 1, 2011/12

22 November 2011 — p.1/18

Lecture Outline

Sorting
@® The Bitonic Sorting Algorithm

® Revsort

22 November 2011 — p.2/18

Bitonic Sequences

@® Definition

® A sequence is bitonic iff it consists of an ascending sequence followed by a
descending sequence or vice-versa.

® More formally, g, z1,...,x,_1 is bitonic iff

< k<n-—1.
(V0§i<k.a}i§$i+1)/\(Vk‘§i<n—1.$iZZUH_l)
V (V0§i<k‘.xiZ:Ui_|_1)/\(Vk'§i<n—1.a?iS:UH_l)

@® Examples:

® [0,2,4,8,10,9,7,5, 3]
® [10,9,7,4,0,2,4,6,9, 14]
® (1,2, 3 4, 5]
®
o

[]
but not [1, 2, 3, 1, 2, 3]

22 November 2011 — p.3/18

Properties of Bitonic Sequences

@ Subsequences of bitonic sequences are bitonic:

® If z is bitonic and has length n, and
@ if0<ipg<i; <...<im—-1<mn,
@ then [CBZ'O s Ljqy e xim—l] is bitonic.

@® This generalizes to k—tonic sequences, but we’ll only need the bitonic version.

@ |If = is an up—down bitonic sequence, then so is reverse(x). Likewise for down—up

sequences.

22 November 2011 — p.4/18

Bitonic Sort in Erlang

sort(List, Up)
Sort List using the bitonic sorting algorithm.
If Up, sort the elements of List into ascending order.
Otherwise, sort them into descending order.
sort([], -) -> [1;
sort([A], -) -> [A];
sort (X, Up) ->
{X0, X1} = lists:split((length(X)+1) div 2, X),
{Y0, Y1} = { sort(X0, Up), sort(Xl, not Up) },
merge(Y0 ++ Y1, Up). % Note: YO ++ Y1 is bitonic

Example:

@ Original list: [24, 46, 2, 12, 98, 16, 67, 78].

o° o° o9 o©

@ Splitintotwo lists: [24, 46, 2, 12]and [98, 16, 67, 78].

@ Sort the first list ascending and the second descending:
[2, 12, 24, 46]and [98, 78, 67, 16]

@ Concatenate the two lists (bitonic result): [2, 12, 24, 46, 98, 78, 67, 16]

@ Perform bitonic merge: [2, 12, 16, 24, 46, 67, 78, 98]

22 November 2011 — p.5/18

Bitonic Merge in Erlang

merge(X, Up)

X is a bitonic sequence.
Return Y where Y is a list of the elements of X

in ascending order if Up is true and in descending order otherwise.
merge([A], -) -> [A]; % basecase
merge (X, Up) -> % recursive case

% split X into "even” and “odd” indexed sublists

{X0, X1} = unshuffle(X),
Y0 = merge(X0, Up), % recursively merge each sublist
Yl = merge(X1l, Up),

order([], shuffle(Y0, Y1), Up). % compare-and-swap on even-odd pairs.

Example:

o® o° o9 o©

@® Listtomerge: [2, 12, 24, 46, 98, 78, 67, 16]
@ Unshuffle into even and odd lists: [2, 24, 98, 67]and [12, 46, 78, 16].
® Recursively merge each list: [2, 24, 67, 98]1and [12, 16, 46, 78].

@ Shuffle the merged sublists: [2, 12, 24, 16, 67, 46, 98, 78].

@® Compare-and-swap even-odd pairs: [2, 12, 16, 24, 46, 67, 78, 98].

22 November 2011 — p.6/18

The order function

order(Acc, List, Up) % compare-and-swap even-odd pairs of List

into ascending order if Up is true, and descending order otherwise.
The result is assembled in Acc.

Note, this is a tail-recursive implementation that reverses the order

of List in the process. That's OK because shuffle is tail recursive
as well and does another reverse that we cancel.

order (Acc, [], -) -> Acc;

order (Acc, [A], _) -> [A | Acc];

order(Acc, [A, B | T], Up) ->

o o0 o0 o0 o9 o©°

order (
if
(A == B) or ((A < B) ==Up) -> [A, B | Accl;
true -> [B, A | Acc]
end,
T, Up

22 November 2011 — p.7/18

Why Bitonic Merge Works

@ Let X be a monotonically increasing sequence of 0’'s and 1’s.
® Eg. X =1[0,0,0,0,0,0,1,1,1,1].

@ Let Y be a monotonically decreasing sequence of 0’s and 1’s.
® Eg.Y=[1,1,1,0,0,0,0,0,0,0].

@ Let Z = concat(X,Y). Note: Z is bitonic.

® Eg. Z =][0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
= [0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0, 0],

Zy = 10,0,0,1,1,1,1,0,0,0], % Zg is bitonic

Zy = 10,0,0,1,1,1,0,0,0,0], % Zj is bitonic.

@® The numberof 1’sin Zy and Z; are nearly equal.

® If the sequence of 1’s in Z starts and ends at even-indexed elements, then
NumberOfOnes(Zp) = NumberOfOnes(Z1) + 1.

® If the sequence of 1’s in Z starts and ends at odd-indexed elements, then
NumberOfOnes(Zp) = NumberOfOnes(Z1) — 1.

® Otherwise, NumberOfOnes(Zp) = NumberOfOnes(Z1).

@ At most one compare-and-swap is needed at the end. 22 November 2011 — p.8/18

For example...

@ Continuing with our earlier example:

Z = 1o,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
ZO — [0707071717171707070]7
Zi = 1[0,0,0,1,1,1,1,1,1,1,0,0,0,0].

@ Recursively apply the merge procedure to Zg and Z; to get sorted lists, So and Si:

SO — [0707070707071717171]7
S1 [0,0,0,0,0,0,0,1,1, 1]

@ Shuffle Sp and S; to get Y:
Y = 10,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1]

@ Continued on next slide.

22 November 2011 — p.9/18

continued example

@ Coloring Y to highlight odd-even pairs:

Yy = 10,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1], % from prev. slide
= [o,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1], % show even-odd pairs

@ Note that there is one pair that needs to be swapped. Applying a compare-and-swap
to each even-od pair yields:

s = [0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1]

@® S is sorted.

22 November 2011 — p.10/18

More formally

@ Let Z be a bitonic sequence of 0’s and 1’s
® Letn be the length of Z. Index the elements of Z from 0ton — 1.
® If Z is all O’s the bitonic network trivially sorts it.
® Otherwise, let ¢ be the index of the first 1 in Z and j be the index of the last 1.

@® Let X be the even-indexed elements of Z:

length(X) = [%]
Tk - O,
L,

@ Let X be the sorted elements of X:

B o= 0, w0<k<[i]+([3]-|4]-1)

= 1, otherwise
@ Continued (next slide)

22 November 2011 —p.11/18

More formally (slide 2)

@ Likewise, let Y be the odd-indexed elements of Z and Y be the sorted elements of

Y
length(Y")
Yk

5]

0, W0sk<|glor|z] k<]
Lo s <k< (g

0, wosk< i+ (15]-[4])
1, otherwise

22 November 2011 — p.12/18

If n 1S even

Let,

qk
dk
Tk

Tk

Ty /2, if K is even
g(k}—l)/2a if k£ is odd
min(qg, qx+1), if kiseven

max(qx_1,qk), if kisodd

Claim: r;, is sorted. Need to show V1 < k < n.rp_1 < rg.

If £ is odd, the claim follows directly from the definition of r.

If £ is even, we need to show

max(qr—2,qk—1) < min(qg, ¢x+1) = max(Tm—1,Tm—1) < Min(Tm,Tm)

where m = k/2.

Because 7,,—1 < Zm, and Z,,,—1 < I, it is sufficient to show z,,,—1 < Z,, and

ITm—1 < Tm,.-

22 November 2011 — p.13/18

n 1S even (continued)

@ Equivalently, we can show Z,,—1 =1 = & =1 and 1 = 1 = & = 1.

Tm—1 =1
= m—12 3]+ (31— 3] -1)
= m>[3]+ (131 [3])
= m> 3]+ (3] - [3])
= ITm =1

Tm—1 =1
= m-12 3]+ (l3] - [3])
= m2 |3+ (3] -[3]) +1
= mz[5]+(13) - [4]-1)
= m>[4]+([2]1-[3] 1), [2]=1%] vecausenis ever
= ITm =1

22 November 2011 — p.14/18

If n is odd

® Let,

dk
dk
o
Tk
Tk

Ty /2, if K is even
g(k}—l)/2a if £ is odd
q0,

min(qg, gx+1), if kisodd

max(qx_1,qK), if kiseven

Claim: r, is sorted. Need to show V1 < k < n.riy_1 < rg.

@ Proof: similar to the n is even case. I'll write up the details for the posted slides.

@ .- bitonic merge is correct

22 November 2011 — p.15/18

Structure of a bitonic sorting network

22 November 2011 — p.16/18

Performance of bitonic sorting

22 November 2011 — p.17/18

Bitonic sort on real computers

22 November 2011 — p.18/18

