
Bitonic Sorting
Mark Greenstreet, CpSc 448B, Term 1, 2011/12

22 November 2011 – p.1/18



Lecture Outline
Sorting! The Bitonic Sorting Algorithm! Revsort

22 November 2011 – p.2/18



Bitonic Sequences
! Definition" A sequence is bitonic iff it consists of an ascending sequence followed by a

descending sequence or vice-versa." More formally, x0, x1, . . . , xn−1 is bitonic iff

∃0 ≤ k < n − 1.

(∀0 ≤ i < k. xi ≤ xi+1) ∧ (∀k ≤ i < n − 1. xi ≥ xi+1)

∨ (∀0 ≤ i < k. xi ≥ xi+1) ∧ (∀k ≤ i < n − 1. xi ≤ xi+1)

! Examples:" [0, 2, 4, 8, 10, 9, 7, 5, 3]" [10, 9, 7, 4, 0, 2, 4, 6, 9, 14]" [1, 2, 3, 4, 5]" []" but not [1, 2, 3, 1, 2, 3]

22 November 2011 – p.3/18



Properties of Bitonic Sequences
! Subsequences of bitonic sequences are bitonic:" If x is bitonic and has length n, and" if 0 ≤ i0 ≤ i1 ≤ . . . ≤ im−1 < n," then [xi0 , xi1 , . . . xim−1 ] is bitonic." This generalizes to k−tonic sequences, but we’ll only need the bitonic version.! If x is an up→down bitonic sequence, then so is reverse(x). Likewise for down→up
sequences.

22 November 2011 – p.4/18



Bitonic Sort in Erlang
% sort(List, Up)
% Sort List using the bitonic sorting algorithm.
% If Up, sort the elements of List into ascending order.
% Otherwise, sort them into descending order.
sort([], ) -> [];
sort([A], ) -> [A];
sort(X, Up) ->

{X0, X1} = lists:split((length(X)+1) div 2, X),
{Y0, Y1} = { sort(X0, Up), sort(X1, not Up) },
merge(Y0 ++ Y1, Up). % Note: Y0 ++ Y1 is bitonic

Example:! Original list: [24, 46, 2, 12, 98, 16, 67, 78].! Split into two lists: [24, 46, 2, 12] and [98, 16, 67, 78].! Sort the first list ascending and the second descending:
[2, 12, 24, 46] and [98, 78, 67, 16]! Concatenate the two lists (bitonic result): [2, 12, 24, 46, 98, 78, 67, 16]! Perform bitonic merge: [2, 12, 16, 24, 46, 67, 78, 98]

22 November 2011 – p.5/18



Bitonic Merge in Erlang
% merge(X, Up)
% X is a bitonic sequence.
% Return Y where Y is a list of the elements of X
% in ascending order if Up is true and in descending order otherwise.
merge([A], ) -> [A]; % base case
merge(X, Up) -> % recursive case

% split X into ”even” and ”odd” indexed sublists
{X0, X1} = unshuffle(X),
Y0 = merge(X0, Up), % recursively merge each sublist
Y1 = merge(X1, Up),
order([], shuffle(Y0, Y1), Up). % compare-and-swap on even-odd pairs.

Example:! List to merge: [2, 12, 24, 46, 98, 78, 67, 16]! Unshuffle into even and odd lists: [2, 24, 98, 67] and [12, 46, 78, 16].! Recursively merge each list: [2, 24, 67, 98] and [12, 16, 46, 78].! Shuffle the merged sublists: [2, 12, 24, 16, 67, 46, 98, 78].! Compare-and-swap even-odd pairs: [2, 12, 16, 24, 46, 67, 78, 98].

22 November 2011 – p.6/18



The order function
% order(Acc, List, Up) % compare-and-swap even-odd pairs of List
% into ascending order if Up is true, and descending order otherwise.
% The result is assembled in Acc.
% Note, this is a tail-recursive implementation that reverses the order
% of List in the process. That’s OK because shuffle is tail recursive
% as well and does another reverse that we cancel.
order(Acc, [], ) -> Acc;
order(Acc, [A], ) -> [A | Acc];
order(Acc, [A, B | T], Up) ->

order(
if

(A == B) or ((A < B) == Up) -> [A, B | Acc];
true -> [B, A | Acc]

end,
T, Up

).

22 November 2011 – p.7/18



Why Bitonic Merge Works
! Let X be a monotonically increasing sequence of 0’s and 1’s." E.g. X = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1].! Let Y be a monotonically decreasing sequence of 0’s and 1’s." E.g. Y = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0].! Let Z = concat(X, Y ). Note: Z is bitonic." E.g. Z = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],

= [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],

Z0 = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0], % Z0 is bitonic

Z1 = [0, 0, 0, 1, 1, 1, 0, 0, 0, 0], % Z1 is bitonic.! The number of 1’s in Z0 and Z1 are nearly equal." If the sequence of 1’s in Z starts and ends at even-indexed elements, then
NumberOfOnes(Z0) = NumberOfOnes(Z1) + 1." If the sequence of 1’s in Z starts and ends at odd-indexed elements, then
NumberOfOnes(Z0) = NumberOfOnes(Z1) − 1." Otherwise, NumberOfOnes(Z0) = NumberOfOnes(Z1).! At most one compare-and-swap is needed at the end. 22 November 2011 – p.8/18



For example...
! Continuing with our earlier example:

Z = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],

Z0 = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0],

Z1 = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0].

! Recursively apply the merge procedure to Z0 and Z1 to get sorted lists, S0 and S1:

S0 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],

S1 = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]

! Shuffle S0 and S1 to get Y :

Y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1]

! Continued on next slide.

22 November 2011 – p.9/18



continued example
! Coloring Y to highlight odd-even pairs:

Y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1], % from prev. slide

= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1], % show even-odd pairs

! Note that there is one pair that needs to be swapped. Applying a compare-and-swap
to each even-od pair yields:

S = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]

! S is sorted.

22 November 2011 – p.10/18



More formally
! Let Z be a bitonic sequence of 0’s and 1’s" Let n be the length of Z. Index the elements of Z from 0 to n − 1." If Z is all 0’s the bitonic network trivially sorts it." Otherwise, let i be the index of the first 1 in Z and j be the index of the last 1.! Let X be the even-indexed elements of Z:

length(X) =
˚ n

2

ˇ

xk = 0, if 0 ≤ k <
˚

i
2

ˇ
or

j
j
2

k
< k <

˚
n
2

ˇ

= 1, if
˚

i
2

ˇ
≤ k ≤

j
j
2

k

! Let X̃ be the sorted elements of X:

x̃k = 0, if 0 ≤ k <
˚ i

2

ˇ
+

“˚ n
2

ˇ
−

j
j
2

k
− 1

”
,

= 1, otherwise

! Continued (next slide)

22 November 2011 – p.11/18



More formally (slide 2)
! Likewise, let Y be the odd-indexed elements of Z and Ỹ be the sorted elements of

Y :
length(Y ) =

¨
n
2

˝

yk = 0, if 0 ≤ k <
¨

i
2

˝
or

l
j
2

m
≤ k <

¨
n
2

˝

= 1, if
¨

i
2

˝
≤ k ≤

l
j
2

m

ỹk = 0, if 0 ≤ k <
¨

i
2

˝
+

“¨
n
2

˝
−

l
j
2

m”

= 1, otherwise

22 November 2011 – p.12/18



If n is even! Let,
qk = x̃k/2, if k is even

qk = ỹ(k−1)/2, if k is odd

rk = min(qk, qk+1), if k is even

rk = max(qk−1, qk), if k is odd

Claim: rk is sorted. Need to show ∀1 ≤ k < n.rk−1 ≤ rk.! If k is odd, the claim follows directly from the definition of r.! If k is even, we need to show

max(qk−2, qk−1) ≤ min(qk, qk+1) ≡ max(x̃m−1, x̃m−1) ≤ min(x̃m, x̃m)

where m = k/2.! Because x̃m−1 ≤ x̃m and x̃m−1 ≤ x̃m it is sufficient to show x̃m−1 ≤ x̃m and
x̃m−1 < x̃m.

22 November 2011 – p.13/18



n is even (continued)! Equivalently, we can show x̃m−1 = 1 ⇒ x̃m = 1 and x̃m−1 = 1 ⇒ x̃m = 1.

x̃m−1 = 1

⇒ m − 1 ≥
˚ i

2

ˇ
+

“˚ n
2

ˇ
−

j
j
2

k
− 1

”

⇒ m ≥
˚

i
2

ˇ
+

“˚
n
2

ˇ
−

j
j
2

k”

⇒ m ≥
¨ i

2

˝
+

“¨ n
2

˝
−

l
j
2

m”

⇒ x̃m = 1

x̃m−1 = 1

⇒ m − 1 ≥
¨

i
2

˝
+

“¨
n
2

˝
−

l
j
2

m”

⇒ m ≥
¨

i
2

˝
+

“¨
n
2

˝
−

l
j
2

m”
+ 1

⇒ m ≥
˚ i

2

ˇ
+

“¨ n
2

˝
−

j
j
2

k
− 1

”

⇒ m ≥
˚

i
2

ˇ
+

“˚
n
2

ˇ
−

j
j
2

k
− 1

”
,

¨
n
2

˝
=

˚
n
2

ˇ
because n is even

⇒ x̃m = 1

22 November 2011 – p.14/18



If n is odd! Let,
qk = x̃k/2, if k is even

qk = ỹ(k−1)/2, if k is odd

r0 = q0,

rk = min(qk, qk+1), if k is odd

rk = max(qk−1, qk), if k is even

Claim: rk is sorted. Need to show ∀1 ≤ k < n.rk−1 ≤ rk.! Proof: similar to the n is even case. I’ll write up the details for the posted slides.! ∴ bitonic merge is correct

22 November 2011 – p.15/18



Structure of a bitonic sorting network

22 November 2011 – p.16/18



Performance of bitonic sorting

22 November 2011 – p.17/18



Bitonic sort on real computers

22 November 2011 – p.18/18


