Bitonic Sorting

Mark Greenstreet, CpSc 448B, Term 1, 2011/12

Lecture Outline

Sorting

- The Bitonic Sorting Algorithm
- Revsort

Bitonic Sequences

- Definition
- A sequence is bitonic iff it consists of an ascending sequence followed by a descending sequence or vice-versa.
- More formally, $x_{0}, x_{1}, \ldots, x_{n-1}$ is bitonic iff

$$
\begin{aligned}
& \exists 0 \leq k<n-1 . \\
& \quad\left(\forall 0 \leq i<k . x_{i} \leq x_{i+1}\right) \wedge\left(\forall k \leq i<n-1 . x_{i} \geq x_{i+1}\right) \\
& \vee \quad\left(\forall 0 \leq i<k . x_{i} \geq x_{i+1}\right) \wedge\left(\forall k \leq i<n-1 . x_{i} \leq x_{i+1}\right)
\end{aligned}
$$

- Examples:
- $[0,2,4,8,10,9,7,5,3]$
- [10, 9, 7, 4, 0, 2, 4, 6, 9, 14]
- [1, 2, 3, 4, 5]
- []
- but not [1, 2, 3, 1, 2, 3]

Properties of Bitonic Sequences

- Subsequences of bitonic sequences are bitonic:
- If x is bitonic and has length n, and
- if $0 \leq i_{0} \leq i_{1} \leq \ldots \leq i_{m-1}<n$,
- then $\left[x_{i_{0}}, x_{i_{1}}, \ldots x_{i_{m-1}}\right]$ is bitonic.
- This generalizes to k-tonic sequences, but we'll only need the bitonic version.
- If x is an up \rightarrow down bitonic sequence, then so is reverse (\mathbf{x}). Likewise for down \rightarrow up sequences.

Bitonic Sort in Erlang

```
% sort(List, Up)
% Sort List using the bitonic sorting algorithm.
% If Up, sort the elements of List into ascending order.
% Otherwise, sort them into descending order.
sort([], -) -> [];
sort([A], -) -> [A];
sort(X, Up) ->
    {X0, X1} = lists:split((length(X)+1) div 2, X),
    {Y0, Y1} = { sort(X0, Up), sort(X1, not Up) },
    merge(Y0 ++ Y1, Up). % Note: Y0 ++ Y1 is bitonic
```


Example:

Original list: $[24,46,2,12,98,16,67,78]$.

- Split into two lists: $[24,46,2,12]$ and $[98,16,67,78]$.
- Sort the first list ascending and the second descending:
$[2,12,24,46]$ and $[98,78,67,16]$
- Concatenate the two lists (bitonic result): $[2,12,24,46,98,78,67,16]$
- Perform bitonic merge: $[2,12,16,24,46,67,78,98]$

Bitonic Merge in Erlang

```
% merge(X, Up)
% X is a bitonic sequence.
% Return Y where Y is a list of the elements of X
% in ascending order if Up is true and in descending order otherwise.
merge([A], -) -> [A]; % base case
merge(X, Up) -> % recursive case
    % split X into "even" and "odd" indexed sublists
    {X0, X1} = unshuffle(X),
    Y0 = merge(X0, Up), % recursively merge each sublist
    Y1 = merge(X1, Up),
    order([], shuffle(Y0, Y1), Up). % compare-and-swap on even-odd pairs.
```


Example:

List to merge: [2, 12, 24, 46, 98, 78, 67, 16]
Unshuffle into even and odd lists: [2, 24, 98, 67] and [12, 46, 78, 16].
Recursively merge each list: [2, 24, 67, 98] and [12, 16, 46, 78].
Shuffle the merged sublists: [2, 12, $24,16,67,46,98,78]$.
Compare-and-swap even-odd pairs: [2, 12, 16, $24,46,67,78,98]$.

The order function

```
% order(Acc, List, Up) % compare-and-swap even-odd pairs of List
% into ascending order if Up is true, and descending order otherwise.
% The result is assembled in Acc.
% Note, this is a tail-recursive implementation that reverses the order
% of List in the process. That's OK because shuffle is tail recursive
% as well and does another reverse that we cancel.
order(Acc, [], -) -> Acc;
order(Acc, [A], -) -> [A | Acc];
order(Acc, [A, B | T], Up) ->
    order(
        if
            (A == B) or ((A < B) == Up) -> [A, B | Acc];
            true -> [B, A | Acc]
        end,
    T, Up
).
```


Why Bitonic Merge Works

- Let X be a monotonically increasing sequence of 0 's and 1's.
- E.g. $X=[0,0,0,0,0,0,1,1,1,1]$.
- Let Y be a monotonically decreasing sequence of 0 's and 1 's.
- E.g. $Y=[1,1,1,0,0,0,0,0,0,0]$.
- Let $Z=\operatorname{concat}(X, Y)$. Note: Z is bitonic.
- E.g. $Z=[0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]$,

$$
=[0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0],
$$

$Z_{0}=[0,0,0,1,1,1,1,0,0,0], \quad \% Z_{0}$ is bitonic
$Z_{1}=[0,0,0,1,1,1,0,0,0,0], \% Z_{1}$ is bitonic.

- The number of 1 's in Z_{0} and Z_{1} are nearly equal.
- If the sequence of 1 's in Z starts and ends at even-indexed elements, then NumberOfOnes $\left(Z_{0}\right)=$ NumberOfOnes $\left(Z_{1}\right)+1$.
- If the sequence of 1 's in Z starts and ends at odd-indexed elements, then NumberOfOnes $\left(Z_{0}\right)=\operatorname{NumberOfOnes}\left(Z_{1}\right)-1$.
- Otherwise, NumberOfOnes $\left(Z_{0}\right)=\operatorname{NumberOfOnes}\left(Z_{1}\right)$.
- At most one compare-and-swap is needed at the end.

For example...

- Continuing with our earlier example:

$$
\begin{aligned}
Z & =[0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0] \\
Z_{0} & =[0,0,0,1,1,1,1,0,0,0] \\
Z_{1} & =[0,0,0,1,1,1,1,1,1,1,0,0,0,0]
\end{aligned}
$$

- Recursively apply the merge procedure to Z_{0} and Z_{1} to get sorted lists, S_{0} and S_{1} :

$$
\begin{aligned}
S_{0} & =[0,0,0,0,0,0,1,1,1,1] \\
S_{1} & =[0,0,0,0,0,0,0,1,1,1]
\end{aligned}
$$

- Shuffle S_{0} and S_{1} to get Y :

$$
Y=[0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1]
$$

- Continued on next slide.

continued example

- Coloring Y to highlight odd-even pairs:

$$
\begin{aligned}
Y & =[0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1], \quad \% \text { from prev. slide } \\
& =[0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1], \quad \% \text { show even-odd pairs }
\end{aligned}
$$

- Note that there is one pair that needs to be swapped. Applying a compare-and-swap to each even-od pair yields:

$$
S=[0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1]
$$

- S is sorted.

More formally

- Let Z be a bitonic sequence of 0 's and 1 's
- Let n be the length of Z. Index the elements of Z from 0 to $n-1$.
- If Z is all 0 's the bitonic network trivially sorts it.
- Otherwise, let i be the index of the first 1 in Z and j be the index of the last 1 .

Let X be the even-indexed elements of Z :

$$
\begin{array}{rlrl}
\operatorname{length}(X) & =\left\lceil\frac{n}{2}\right\rceil & \\
x_{k} & =0, & & \text { if } 0 \leq k<\left\lceil\frac{i}{2}\right\rceil \text { or }\left\lfloor\frac{j}{2}\right\rfloor<k<\left\lceil\frac{n}{2}\right\rceil \\
& =1, & & \text { if }\left\lceil\frac{i}{2}\right\rceil \leq k \leq\left\lfloor\frac{j}{2}\right\rfloor
\end{array}
$$

- Let \tilde{X} be the sorted elements of X :

$$
\begin{aligned}
\tilde{x}_{k} & =0, \quad \text { if } 0 \leq k<\left\lceil\frac{i}{2}\right\rceil+\left(\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{j}{2}\right\rfloor-1\right), \\
& =1, \quad \text { otherwise }
\end{aligned}
$$

- Continued (next slide)

More formally (slide 2)

- Likewise, let Y be the odd-indexed elements of Z and \tilde{Y} be the sorted elements of Y :

$$
\begin{array}{rlrl}
\operatorname{length}(Y) & =\left\lfloor\frac{n}{2}\right\rfloor & \\
y_{k} & =0, & & \text { if } 0 \leq k<\left\lfloor\frac{i}{2}\right\rfloor \text { or }\left\lceil\frac{j}{2}\right\rceil \leq k<\left\lfloor\frac{n}{2}\right\rfloor \\
& =1, & & \text { if }\left\lfloor\frac{i}{2}\right\rfloor \leq k \leq\left\lceil\frac{j}{2}\right\rceil \\
\tilde{y}_{k} & =0, & & \text { if } 0 \leq k<\left\lfloor\frac{i}{2}\right\rfloor+\left(\left\lfloor\frac{n}{2}\right\rfloor-\left\lceil\frac{j}{2}\right\rceil\right) \\
& =1, & & \text { otherwise }
\end{array}
$$

If n is even

- Let,

$$
\begin{aligned}
q_{k} & =\tilde{x}_{k / 2}, & & \text { if } k \text { is even } \\
q_{k} & =\tilde{y}_{(k-1) / 2}, & & \text { if } k \text { is odd } \\
r_{k} & =\min \left(q_{k}, q_{k+1}\right), & & \text { if } k \text { is even } \\
r_{k} & =\max \left(q_{k-1}, q_{k}\right), & & \text { if } k \text { is odd }
\end{aligned}
$$

Claim: r_{k} is sorted. Need to show $\forall 1 \leq k<n . r_{k-1} \leq r_{k}$.

- If k is odd, the claim follows directly from the definition of r.
- If k is even, we need to show

$$
\max \left(q_{k-2}, q_{k-1}\right) \leq \min \left(q_{k}, q_{k+1}\right) \equiv \max \left(\tilde{x}_{m-1}, \tilde{x}_{m-1}\right) \leq \min \left(\tilde{x}_{m}, \tilde{x}_{m}\right)
$$

where $m=k / 2$.

- Because $\tilde{x}_{m-1} \leq \tilde{x}_{m}$ and $\tilde{x}_{m-1} \leq \tilde{x}_{m}$ it is sufficient to show $\tilde{x}_{m-1} \leq \tilde{x}_{m}$ and $\tilde{x}_{m-1}<\tilde{x}_{m}$.

n is even (continued)

Equivalently, we can show $\tilde{x}_{m-1}=1 \Rightarrow \tilde{x}_{m}=1$ and $\tilde{x}_{m-1}=1 \Rightarrow \tilde{x}_{m}=1$.

$$
\begin{aligned}
& \tilde{x}_{m-1}=1 \\
\Rightarrow & m-1 \geq\left\lceil\frac{i}{2}\right\rceil+\left(\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{j}{2}\right\rfloor-1\right) \\
\Rightarrow & m \geq\left\lceil\frac{i}{2}\right\rceil+\left(\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{j}{2}\right\rfloor\right) \\
\Rightarrow & m \geq\left\lfloor\frac{i}{2}\right\rfloor+\left(\left\lfloor\frac{n}{2}\right\rfloor-\left\lceil\frac{j}{2}\right\rceil\right) \\
\Rightarrow & \tilde{x}_{m}=1 \\
& \quad \tilde{x}_{m-1}=1 \\
\Rightarrow \quad & m-1 \geq\left\lfloor\frac{i}{2}\right\rfloor+\left(\left\lfloor\frac{n}{2}\right\rfloor-\left\lceil\frac{j}{2}\right\rceil\right) \\
\Rightarrow & m \geq\left\lfloor\frac{i}{2}\right\rfloor+\left(\left\lfloor\frac{n}{2}\right\rfloor-\left\lceil\frac{j}{2}\right\rceil\right)+1 \\
\Rightarrow & m \geq\left\lceil\frac{i}{2}\right\rceil+\left(\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{j}{2}\right\rfloor-1\right) \\
\Rightarrow & m \geq\left\lceil\frac{i}{2}\right\rceil+\left(\left\lceil\frac{n}{2}\right\rceil-\left\lfloor\frac{j}{2}\right\rfloor-1\right), \\
\Rightarrow & \tilde{x}_{m}=1
\end{aligned}
$$

If n is odd

- Let,

$$
\begin{aligned}
q_{k} & =\tilde{x}_{k / 2}, & & \text { if } k \text { is even } \\
q_{k} & =\tilde{y}_{(k-1) / 2}, & & \text { if } k \text { is odd } \\
r_{0} & =q_{0}, & & \\
r_{k} & =\min \left(q_{k}, q_{k+1}\right), & & \text { if } k \text { is odd } \\
r_{k} & =\max \left(q_{k-1}, q_{k}\right), & & \text { if } k \text { is even }
\end{aligned}
$$

Claim: r_{k} is sorted. Need to show $\forall 1 \leq k<n . r_{k-1} \leq r_{k}$.

- Proof: similar to the n is even case. I'll write up the details for the posted slides.
\therefore bitonic merge is correct

Structure of a bitonic sorting network

Performance of bitonic sorting

Bitonic sort on real computers

