
Introduction to GPUs and CUDA

Mark Greenstreet

CpSc 448B – Nov. 10, 2011

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 0 / 15



Lecture Outline

GPUs
I Early geometry engines.
I Adding functionality and programmability.
I GPGPUs

CUDA
I Execution Model
I Memory Model
I Code Snippets

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 1 / 15



Before the first GPU

Early 1980’s: bit-blit hardware for simple 2D graphics.
Draw lines, simple curves, and text.
Fill rectangles and triangles.
Color used a “color map” to save memory:

I bit-wise logical operations on color map indices!

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 2 / 15



1989: The SGI Geometry Engine

Basic rendering: coordinate transformation.
I Represent a 3D point with a 4-element vector.
I The fourth element is 1, and allows translations.
I Multiply vector by matrix to perform coordinate transformation.

Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.

I For example, a 32 × 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.

F A one-bit multiplier cell is about 50 transistors.
F That’s about 50K transistors for a very simple design.

30K is quite feasible using better architectures.

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 3 / 15



1989: The SGI Geometry Engine

Basic rendering: coordinate transformation.
Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.

I For example, a 32 × 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.

F A one-bit multiplier cell is about 50 transistors.
F That’s about 50K transistors for a very simple design.

30K is quite feasible using better architectures.
I The 80486DX was also born in 1989.

F The 80486DX was 1.2M transistors, 16MHz, 13MIPs.
F That’s equal to 24 dedicated multipliers.
F 16 multiply-and-accumulate units running at 50MHz (easy in the

same 1µ process) produce 1.6GFlops!

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 3 / 15



Why is dedicated hardware so much faster?

Pipelining.
I I’ll draw a figure on the board – key ideas:

F A multiplier can be built from an array of adders (direct
implementation of pencil-and-paper method).

F Dedicated registers can be put between the adders.
F A few clever tricks with handling the carries.
F And you get a high throughput multiplier. + It’s also low power.

I Graphics can tolerate lots of latency.

Hardwired data flow.

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 4 / 15



A Pipelined Multiplier

I’ll draw a figure on the whiteboard. You’ve got space here to make
your own version.

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 5 / 15



The fundamental challenge of graphics

Human vision isn’t getting any better.
Once you can perform a graphics task at the limits of human
perception (or the limits of consumer budget for monitors), then
there’s no point in doing it any better.
Rapid advances in chip technology meant that coordinate
transformations (the specialty of the SGI Geometry Engine) were
soon as fast as anyone needed.
Graphics processors have evolved to include more functions. For
example,

I Shading
I Texture mapping

This led to a change from hardwired architectures, to
programmable ones.

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 6 / 15



The GPGPU

General Purpose Graphics Processing Unit
The volume market is for graphics, and the highest profit is GPUs
for high-end gamers.

I Most of the computation is floating point.
I Latency doesn’t matter.
I Abundant parallelism.

Make the architecture fit the problem:
I SIMD – single instruction, multiple (parallel) data streams.

F Amortize control overhead over a large number of functional units.
F They call it SIMT (. . . , multiple threads) because they allow

conditional execution.
I High-latency operations

F Allows efficient, high-throughput, high-latency floating point units.
F Allows high latency accesses to off-chip memory.

I This means lots of threads per processor.

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 7 / 15



The Fermi Architecture

I’ll draw a figure on the whiteboard. You’ve got space here to make
your own version.

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 8 / 15



Lecture Outline

GPUs
I been there, done that.

CUDA – we are here!
I Execution Model
I Memory Model
I Code Snippets

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 9 / 15



Execution Model

The anatomy of a CUDA program
I A CUDA application consists of one or more thread blocks.
I A thread block consists of one or more warps.
I A warp consists of one ore more threads.

Why?
I The program structure reflects the GPGPU architecture.
I To get good performance, the programmer needs to focus on

“more” for each “or more” mentioned above.
The next few slides describe the program structure in more detail,

I Working up from threads to applications.

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 10 / 15



CUDA Threads

Sequential threads of execution.
Basically like normal C-code.

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 11 / 15



CUDA Warps

Multiple threads that are executing the same code.
These will map to a “streaming multiprocessor” on the GPGPU.

I On Fermi, a streaming multiprocessor supports 32 parallel
operations.

I Thus, for optimal efficiency, a warp should have a multiple of 32
threads.

A word about conditionals:
I A thread can have control statements such as if.
I If all threads in a warp do the same thing at a conditional, execution

is efficient.
F Otherwise, the then threads will execute, while the else threads do

nothing,
F Likewise, the else threads will execute while the then threads do

nothing.
F Warning: CUDA doesn’t say that it’s then before else ora any other

particular order. Don’t depend on the ordering.

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 12 / 15



CUDA Thread Blocks

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 13 / 15



The Fermi Memory Hierarchy

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 14 / 15



saxpy

Mark Greenstreet () GPUs and CUDA CpSc 448B – Nov. 10, 2011 15 / 15


