Introduction to GPUs and CUDA

Mark Greenstreet

CpSc 448B — Nov. 10, 2011

Mark Greenstreet () GPUs and CUDA



Lecture Outline

@ GPUs
» Early geometry engines.
» Adding functionality and programmability.
» GPGPUs
e CUDA
» Execution Model
» Memory Model
» Code Snippets

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 1/15



Before the first GPU

Early 1980’s: bit-blit hardware for simple 2D graphics.
@ Draw lines, simple curves, and text.

@ Fill rectangles and triangles.
@ Color used a “color map” to save memory:
» bit-wise logical operations on color map indices!

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011

2/15



1989: The SGI Geometry Engine

@ Basic rendering: coordinate transformation.
» Represent a 3D point with a 4-element vector.
» The fourth element is 1, and allows translations.
» Multiply vector by matrix to perform coordinate transformation.
@ Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.
» For example, a 32 x 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.
* A one-bit multiplier cell is about 50 transistors.
* That’s about 50K transistors for a very simple design.
30K is quite feasible using better architectures.

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 3/15



1989: The SGI Geometry Engine

@ Basic rendering: coordinate transformation.

@ Dedicated hardware is much more efficient that a general purpose
CPU for matrix-vector multiplication.
» For example, a 32 x 32 multiplier can be built with 322 = 1024
one-bit multiplier cells.
* A one-bit multiplier cell is about 50 transistors.
* That’s about 50K transistors for a very simple design.
30K is quite feasible using better architectures.
» The 80486DX was also born in 1989.
* The 80486DX was 1.2M transistors, 16MHz, 13MIPs.
* That’s equal to 24 dedicated multipliers.
* 16 multiply-and-accumulate units running at 50MHz (easy in the
same 1u process) produce 1.6GFlops!

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 3/15



Why is dedicated hardware so much faster?

@ Pipelining.
» I'll draw a figure on the board — key ideas:

* A multiplier can be built from an array of adders (direct
implementation of pencil-and-paper method).

* Dedicated registers can be put between the adders.

* A few clever tricks with handling the carries.

* And you get a high throughput multiplier. + It's also low power.

» Graphics can tolerate lots of latency.
@ Hardwired data flow.

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 4/15



A Pipelined Multiplier

I'll draw a figure on the whiteboard. You’ve got space here to make
your own version.

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 5/15



The fundamental challenge of graphics

Human vision isn’t getting any better.
@ Once you can perform a graphics task at the limits of human
perception (or the limits of consumer budget for monitors), then
there’s no point in doing it any better.

@ Rapid advances in chip technology meant that coordinate
transformations (the specialty of the SGI Geometry Engine) were
soon as fast as anyone needed.

@ Graphics processors have evolved to include more functions. For
example,

» Shading
» Texture mapping

@ This led to a change from hardwired architectures, to

programmable ones.

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 6/15



The GPGPU

General Purpose Graphics Processing Unit
@ The volume market is for graphics, and the highest profit is GPUs
for high-end gamers.

» Most of the computation is floating point.
» Latency doesn’t matter.
» Abundant parallelism.

@ Make the architecture fit the problem:
» SIMD - single instruction, multiple (parallel) data streams.

* Amortize control overhead over a large number of functional units.
* They call it SIMT (..., multiple threads) because they allow
conditional execution.

» High-latency operations

* Allows efficient, high-throughput, high-latency floating point units.
* Allows high latency accesses to off-chip memory.

» This means lots of threads per processor.

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 7/15



The Fermi Architecture

I'll draw a figure on the whiteboard. You’ve got space here to make
your own version.

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 8/15



Lecture Outline

@ GPUs
» been there, done that.
@ CUDA — we are here!

» Execution Model
» Memory Model
» Code Snippets

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 9/15



Execution Model

@ The anatomy of a CUDA program

» A CUDA application consists of one or more thread blocks.
» A thread block consists of one or more warps.
» A warp consists of one ore more threads.

@ Why?
» The program structure reflects the GPGPU architecture.

» To get good performance, the programmer needs to focus on
“more” for each “or more” mentioned above.

@ The next few slides describe the program structure in more detalil,
» Working up from threads to applications.

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 10/15



CUDA Threads

@ Sequential threads of execution.
@ Basically like normal C-code.

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 11/15



CUDA Warps

@ Multiple threads that are executing the same code.
@ These will map to a “streaming multiprocessor” on the GPGPU.

» On Fermi, a streaming multiprocessor supports 32 parallel
operations.

» Thus, for optimal efficiency, a warp should have a multiple of 32
threads.

@ A word about conditionals:

» A thread can have control statements such as i f.
» If all threads in a warp do the same thing at a conditional, execution

is efficient.
* Otherwise, the then threads will execute, while the else threads do
nothing,
* Likewise, the else threads will execute while the then threads do
nothing.

* Warning: CUDA doesn'’t say that it's then before else ora any other
particular order. Don’t depend on the ordering.

Mark Greenstreet () GPUs and CUDA CpSc 448B — Nov. 10, 2011 12/15



CUDA Thread Blocks

Mark Greenstreet () GPUs and CUDA



The Fermi Memory Hierarchy

Mark Greenstreet () GPUs and CUDA



saxpy

Mark Greenstreet () GPUs and CUDA



